Statistical Modelling by Exponential Families
暫譯: 指數族的統計建模
Sundberg, Rolf
- 出版商: Cambridge
- 出版日期: 2019-10-10
- 售價: $5,280
- 貴賓價: 9.5 折 $5,016
- 語言: 英文
- 頁數: 290
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1108476597
- ISBN-13: 9781108476591
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book is a readable, digestible introduction to exponential families, encompassing statistical models based on the most useful distributions in statistical theory, including the normal, gamma, binomial, Poisson, and negative binomial. Strongly motivated by applications, it presents the essential theory and then demonstrates the theory's practical potential by connecting it with developments in areas like item response analysis, social network models, conditional independence and latent variable structures, and point process models. Extensions to incomplete data models and generalized linear models are also included. In addition, the author gives a concise account of the philosophy of Per Martin-L f in order to connect statistical modelling with ideas in statistical physics, including Boltzmann's law. Written for graduate students and researchers with a background in basic statistical inference, the book includes a vast set of examples demonstrating models for applications and exercises embedded within the text as well as at the ends of chapters.
商品描述(中文翻譯)
本書是一本易讀且易消化的指導書,介紹指數族(exponential families),涵蓋基於統計理論中最有用的分佈的統計模型,包括常態分佈(normal)、伽瑪分佈(gamma)、二項分佈(binomial)、泊松分佈(Poisson)和負二項分佈(negative binomial)。本書強烈受到應用的驅動,首先介紹基本理論,然後通過將理論與項目反應分析(item response analysis)、社交網絡模型(social network models)、條件獨立性(conditional independence)和潛在變數結構(latent variable structures)、點過程模型(point process models)等領域的發展相連結,展示理論的實際潛力。此外,書中還包括對不完整數據模型(incomplete data models)和廣義線性模型(generalized linear models)的擴展。作者還簡要介紹了Per Martin-Löf的哲學,以便將統計建模與統計物理中的思想相連結,包括玻爾茲曼定律(Boltzmann's law)。本書是為具有基本統計推斷背景的研究生和研究人員撰寫的,包含大量示範應用模型的範例,以及嵌入文本中的練習題和章節末的練習題。