Evaluating Learning Algorithms: A Classification Perspective
暫譯: 評估學習演算法:分類視角
Nathalie Japkowicz
- 出版商: Cambridge
- 出版日期: 2014-06-05
- 售價: $2,275
- 貴賓價: 9.5 折 $2,161
- 語言: 英文
- 頁數: 424
- 裝訂: Paperback
- ISBN: 1107653118
- ISBN-13: 9781107653115
-
相關分類:
Algorithms-data-structures
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$299Python Power!: The Comprehensive Guide
-
$1,782Data Science for Business: What you need to know about data mining and data-analytic thinking (Paperback)
-
$1,568Machine Learning: Hands-On for Developers and Technical Professionals
-
$403資料探勘:實用機器學習工具與技術, 3/e (Data Mining: Practical Machine Learning Tools and Techniques, 3/e)
-
$990Doing Math with Python: Use Programming to Explore Algebra, Statistics, Calculus, and More! (Paperback)
-
$505Xcode 實戰:Apple 平臺開發實用技術、技巧及最佳流程
-
$580$452 -
$580$458 -
$2,980$2,831 -
$750Machine Learning Refined: Foundations, Algorithms, and Applications (Hardcover)
-
$1,617Deep Learning (Hardcover)
-
$2,058Data Mining : Practical Machine Learning Tools and Techniques, 4/e (Paperback)
-
$2,220$2,109 -
$360$238 -
$580$458 -
$390$308 -
$480$379 -
$520$411 -
$580$458 -
$1,900$1,805 -
$1,200$948 -
$1,180$1,121 -
$450$356 -
$1,656Introduction to Machine Learning, 4/e (Hardcover)
-
$2,010$1,910
相關主題
商品描述
The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book examines various aspects of the evaluation process with an emphasis on classification algorithms. The authors describe several techniques for classifier performance assessment, error estimation and resampling, obtaining statistical significance as well as selecting appropriate domains for evaluation. They also present a unified evaluation framework and highlight how different components of evaluation are both significantly interrelated and interdependent. The techniques presented in the book are illustrated using R and WEKA facilitating better practical insight as well as implementation. Aimed at researchers in the theory and applications of machine learning, this book offers a solid basis for conducting performance evaluations of algorithms in practical settings.
商品描述(中文翻譯)
機器學習領域已經成熟到可以將許多複雜的學習方法應用於實際應用的程度。因此,研究人員擁有適當的工具來評估學習方法並理解其背後的問題是至關重要的。
本書探討評估過程的各個方面,重點放在分類演算法上。作者描述了幾種用於分類器性能評估、錯誤估計和重抽樣的技術,獲取統計顯著性以及選擇適當的評估領域。他們還提出了一個統一的評估框架,並強調評估的不同組件之間是如何顯著相互關聯和相互依賴的。本書中介紹的技術使用 R 和 WEKA 進行說明,以促進更好的實踐洞察和實現。
本書旨在為機器學習理論和應用的研究人員提供一個堅實的基礎,以便在實際環境中進行演算法性能評估。