Empirical Evaluation Techniques In Computer Vision
暫譯: 計算機視覺中的實證評估技術
Kevin W. Bowyer, P. Jonathon Phillips
- 出版商: Wiley
- 出版日期: 1998-07-11
- 售價: $3,340
- 貴賓價: 9.5 折 $3,173
- 語言: 英文
- 頁數: 262
- 裝訂: Paperback
- ISBN: 0818684011
- ISBN-13: 9780818684012
-
相關分類:
Computer Vision
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$650$514 -
$590$466 -
$690$538 -
$360$284 -
$1,200$948 -
$2,050$1,948 -
$500$450 -
$750$593 -
$480$374 -
$540$427 -
$450$405 -
$750$638 -
$640$506 -
$780$616 -
$480$379 -
$580$493 -
$650$507 -
$650$514 -
$460$391 -
$860$679 -
$205$205 -
$520$411 -
$780$616 -
$195$195 -
$165$165
商品描述
Description:
The two main motivators in computer vision research are to develop algorithms to solve vision problems and to understand and model the human visual system. This work focuses on developing solutions to vision problems from the computer vision and pattern recognition community's point of view.
Empirical Evaluation Techniques in Computer Vision covers methods that allow comparative assessment of algorithms and the accompanying benefits:
- Places computer vision on solid experimental and scientific grounds
- Assists the development of engineering solutions to practical problems
- Allows accurate assessments of computer vision research
- Provides convincing evidence that computer vision research results in practical solutions
Empirical evaluations are divided into three basic categories providing useful insights into computer vision algorithms. Independently administered evaluations make up the first category. The second is evaluations of a set of classification algorithms by one group. The third category is composed of problems where the ground truth is not self evident. A major component of the evaluation process is to develop a method of obtaining the ground truth.
Empirical evaluations of algorithms are slowly emerging as a serious subfield in computer vision. The text builds a foundation for developing accepted practices for evaluating algorithms that determine the strengths and weaknesses of different approaches while identifying necessary further research. Successful evaluations can help convince potential users that an algorithm has matured to the point that it can be successfully fielded.
Table of Contents:
Overview of Work in Empirical Evaluation of Computer Vision Algorithms (Kevin W. Bowyer and P. Jonathon Phillips).
A Blinded Evaluation and Comparison of Image Registration Methods (J. Michael Fitzpatrick and Jay B. West).
A Benchmark for Graphics Recognition Systems (Atul K. Chhabra and Ihsin T. Phillips).
Performance Evaluation of Clustering Algorithms for Scalable Image Retrieval (mohammed Abdel-Mottaleb, Santhana Krishnamachari, and Nicholas J. Mankovich).
Analysis of PCA-Based Face Recognition Algorithms (Hyeonjoon Moon and P. Jonathan Phillips).
Performance Assessment by Resampling: Rigid Motion Estimators (Bogdan Matei, Peter Meer, and David Tyler).
Sensor Errors and the Uncertainties in Stereo Reconstruction (Gerda Kamberova and Ruzena Bajcsy).
Fingerprint Image Enhancement: Algorithm and Performance Evaluation (Lin Hong, Yifei Wan, and Anil Jain).
Empirical Evaluation of Laser Radar Recognition Algorithms Using Synthetic and Real Data (Sandor Der and Qinfen Zheng).
A WWW-Accessible Database for 3D Vision Research (Patrick J. Flynn and Richard J. Campbell).
Shape of Motion and the Perception of Human Gaits (Jeffrey E. Boyd and James J. Little).
Empirical Evaluation of Automatically Extracted Road Axes (Christain Wiedemann, Christian Heipke, Helmut Mayer, and Olivier Jamet).
Analytical and Empirical Performance Evaluation of Subpixel Line and Edge Detection (Carsten Steger).
Objective Evaluation of Edge Detectors Using a Formally Defined Framework (Sean Dougherty and Kevin W. Bowyer).
An Objective Comparison Methodology of Edge Detection Algorithms Using a Structure from Motion Task (Min C. Shin, Dmitry Goldgof, and Kevin W. Bowyer).
Author Index.
商品描述(中文翻譯)
**描述:**
計算機視覺研究的兩個主要動機是開發解決視覺問題的演算法,以及理解和建模人類視覺系統。本書專注於從計算機視覺和模式識別社群的角度開發解決視覺問題的方案。
《計算機視覺中的實證評估技術》涵蓋了允許對演算法進行比較評估的方法及其伴隨的好處:
- 將計算機視覺建立在堅實的實驗和科學基礎上
- 協助開發針對實際問題的工程解決方案
- 允許對計算機視覺研究進行準確評估
- 提供令人信服的證據,表明計算機視覺研究能夠產生實用的解決方案
實證評估分為三個基本類別,提供對計算機視覺演算法的有用見解。第一類是獨立管理的評估。第二類是由一組對一組分類演算法的評估。第三類由真實情況不明顯的問題組成。評估過程的一個主要組成部分是開發獲取真實情況的方法。
演算法的實證評估正逐漸成為計算機視覺中的一個重要子領域。本書為開發評估演算法的公認實踐奠定了基礎,這些演算法能夠確定不同方法的優缺點,同時識別必要的進一步研究。成功的評估可以幫助說服潛在用戶,讓他們相信某個演算法已經成熟到可以成功應用的程度。
**目錄:**
- 計算機視覺演算法實證評估工作的概述(Kevin W. Bowyer 和 P. Jonathon Phillips)
- 一項盲測評估和影像配準方法的比較(J. Michael Fitzpatrick 和 Jay B. West)
- 圖形識別系統的基準(Atul K. Chhabra 和 Ihsin T. Phillips)
- 可擴展影像檢索的聚類演算法性能評估(mohammed Abdel-Mottaleb、Santhana Krishnamachari 和 Nicholas J. Mankovich)
- 基於 PCA 的人臉識別演算法分析(Hyeonjoon Moon 和 P. Jonathan Phillips)
- 通過重採樣進行性能評估:剛性運動估計器(Bogdan Matei、Peter Meer 和 David Tyler)
- 傳感器誤差與立體重建中的不確定性(Gerda Kamberova 和 Ruzena Bajcsy)
- 指紋影像增強:演算法與性能評估(Lin Hong、Yifei Wan 和 Anil Jain)
- 使用合成和真實數據的激光雷達識別演算法的實證評估(Sandor Der 和 Qinfen Zheng)
- 用於 3D 視覺研究的 WWW 可訪問數據庫(Patrick J. Flynn 和 Richard J. Campbell)
- 動作形狀與人類步態的感知(Jeffrey E. Boyd 和 James J. Little)
- 自動提取道路軸線的實證評估(Christain Wiedemann、Christian Heipke、Helmut Mayer 和 Olivier Jamet)
- 子像素線條和邊緣檢測的分析與實證性能評估(Carsten Steger)
- 使用正式定義框架的邊緣檢測器的客觀評估(Sean Dougherty 和 Kevin W. Bowyer)
- 使用運動結構任務的邊緣檢測演算法的客觀比較方法(Min C. Shin、Dmitry Goldgof 和 Kevin W. Bowyer)
- 作者索引。