State Estimation for Robotics
暫譯: 機器人狀態估計
Timothy D. Barfoot
- 出版商: Cambridge
- 出版日期: 2017-07-31
- 定價: $3,150
- 售價: 6.0 折 $1,890
- 語言: 英文
- 頁數: 380
- 裝訂: Hardcover
- ISBN: 1107159393
- ISBN-13: 9781107159396
-
相關分類:
機器人製作 Robots
-
其他版本:
State Estimation for Robotics, 2/e (Hardcover)
買這商品的人也買了...
-
$4,200$3,990 -
$1,620$1,588 -
$2,880An Invitation to 3-D Vision (Hardcover)
-
$2,200$2,090 -
$1,620Learning Linux Binary Analysis (Paperback)
-
$2,050$1,948 -
$882Learning Concurrent Programming in Scala - Second Edition
-
$2,630$2,499 -
$383視覺 SLAM 十四講:從理論到實踐
-
$714$678 -
$1,962Mastering Linux Kernel Development (Paperback)
-
$3,300$3,135 -
$580$458 -
$2,700$2,565 -
$1,980$1,881 -
$594$564 -
$301機器人感知:因子圖在 SLAM 中的應用
-
$1,800$1,710 -
$680$612 -
$301目標定位跟蹤原理及應用——MATLAB模擬
-
$2,720$2,584 -
$1,600$1,520 -
$780$702 -
$690$545 -
$580$522
商品描述
A key aspect of robotics today is estimating the state, such as position and orientation, of a robot as it moves through the world. Most robots and autonomous vehicles depend on noisy data from sensors such as cameras or laser rangefinders to navigate in a three-dimensional world. This book presents common sensor models and practical advice on how to carry out state estimation for rotations and other state variables. It covers both classical state estimation methods such as the Kalman filter, as well as important modern topics such as batch estimation, the Bayes filter, sigmapoint and particle filters, robust estimation for outlier rejection, and continuous-time trajectory estimation and its connection to Gaussian-process regression. The methods are demonstrated in the context of important applications such as point-cloud alignment, pose-graph relaxation, bundle adjustment, and simultaneous localization and mapping. Students and practitioners of robotics alike will find this a valuable resource.
商品描述(中文翻譯)
當今機器人技術的一個關鍵方面是估計機器人在世界中移動時的狀態,例如位置和方向。大多數機器人和自動駕駛車輛依賴來自相機或激光測距儀等傳感器的噪聲數據,以在三維世界中導航。本書介紹了常見的傳感器模型以及如何進行旋轉和其他狀態變量的狀態估計的實用建議。它涵蓋了經典的狀態估計方法,例如卡爾曼濾波器(Kalman filter),以及一些重要的現代主題,如批量估計(batch estimation)、貝葉斯濾波器(Bayes filter)、sigma點濾波器(sigmapoint filters)和粒子濾波器(particle filters)、針對異常值拒絕的穩健估計(robust estimation),以及連續時間軌跡估計及其與高斯過程回歸(Gaussian-process regression)的關聯。這些方法在重要應用的背景下進行演示,例如點雲對齊(point-cloud alignment)、姿態圖放鬆(pose-graph relaxation)、束調整(bundle adjustment)以及同時定位與地圖構建(simultaneous localization and mapping)。無論是機器人學的學生還是從業者,都會發現這是一本寶貴的資源。