Variational Bayesian Learning Theory
暫譯: 變分貝葉斯學習理論
Nakajima, Shinichi, Watanabe, Kazuho, Sugiyama, Masashi
- 出版商: Cambridge
- 出版日期: 2019-08-22
- 售價: $5,670
- 貴賓價: 9.5 折 $5,387
- 語言: 英文
- 頁數: 375
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1107076153
- ISBN-13: 9781107076150
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
商品描述(中文翻譯)
變分貝葉斯學習是機器學習中最受歡迎的方法之一。本書專為機器學習的研究人員和研究生設計,總結了變分貝葉斯學習的非漸近和漸近理論的最新發展,並建議如何在實踐中應用這些理論。作者首先建立了一個基本框架,重點在於共軛性,這使讀者能夠推導出可處理的算法。接下來,總結了非漸近理論,儘管其在雙線性模型的應用上有限,但精確描述了變分貝葉斯解的行為,並揭示了其稀疏性誘導機制。最後,文本總結了漸近理論,揭示了依賴於先驗設定的相變現象,從而提供了如何為特定目的設置超參數的建議。詳細的推導使讀者能夠在沒有貝葉斯學習特定數學技術的先前知識下跟隨內容。