Hyperparameter Tuning with Python: Boost your machine learning model's performance via hyperparameter tuning
暫譯: 使用 Python 進行超參數調整:提升機器學習模型性能的超參數調整技巧
Owen, Louis
- 出版商: Packt Publishing
- 出版日期: 2022-07-29
- 售價: $1,750
- 貴賓價: 9.5 折 $1,663
- 語言: 英文
- 頁數: 306
- 裝訂: Quality Paper - also called trade paper
- ISBN: 180323587X
- ISBN-13: 9781803235875
-
相關分類:
Python、程式語言、Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$15,070$14,317 -
$2,800$2,660 -
$2,350$2,233 -
$2,720$2,584 -
$834$792 -
$505深入理解 XGBoost:高效機器學習算法與進階
-
$750$375 -
$1,421Fundamentals of Machine Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Case Studies, 2/e (Hardcover)
-
$520$406 -
$520$411 -
$1,980$1,881
商品描述
Take your machine learning models to the next level by learning how to leverage hyperparameter tuning, allowing you to control the model's finest details
Key Features:
- Gain a deep understanding of how hyperparameter tuning works
- Explore exhaustive search, heuristic search, and Bayesian and multi-fidelity optimization methods
- Learn which method should be used to solve a specific situation or problem
Book Description:
Hyperparameters are an important element in building useful machine learning models. This book curates numerous hyperparameter tuning methods for Python, one of the most popular coding languages for machine learning. Alongside in-depth explanations of how each method works, you will use a decision map that can help you identify the best tuning method for your requirements.
You'll start with an introduction to hyperparameter tuning and understand why it's important. Next, you'll learn the best methods for hyperparameter tuning for a variety of use cases and specific algorithm types. This book will not only cover the usual grid or random search but also other powerful underdog methods. Individual chapters are also dedicated to the three main groups of hyperparameter tuning methods: exhaustive search, heuristic search, Bayesian optimization, and multi-fidelity optimization. Later, you will learn about top frameworks like Scikit, Hyperopt, Optuna, NNI, and DEAP to implement hyperparameter tuning. Finally, you will cover hyperparameters of popular algorithms and best practices that will help you efficiently tune your hyperparameter.
By the end of this book, you will have the skills you need to take full control over your machine learning models and get the best models for the best results.
What You Will Learn:
- Discover hyperparameter space and types of hyperparameter distributions
- Explore manual, grid, and random search, and the pros and cons of each
- Understand powerful underdog methods along with best practices
- Explore the hyperparameters of popular algorithms
- Discover how to tune hyperparameters in different frameworks and libraries
- Deep dive into top frameworks such as Scikit, Hyperopt, Optuna, NNI, and DEAP
- Get to grips with best practices that you can apply to your machine learning models right away
Who this book is for:
This book is for data scientists and ML engineers who are working with Python and want to further boost their ML model's performance by using the appropriate hyperparameter tuning method. Although a basic understanding of machine learning and how to code in Python is needed, no prior knowledge of hyperparameter tuning in Python is required.
商品描述(中文翻譯)
透過學習如何利用超參數調整,將您的機器學習模型提升到新的水平,讓您能夠控制模型的最細節
主要特點:
- 深入了解超參數調整的運作方式
- 探索全面搜尋、啟發式搜尋、貝葉斯優化及多忠實度優化方法
- 學習在特定情況或問題中應使用哪種方法
書籍描述:
超參數是建立有用的機器學習模型的重要元素。本書整理了多種適用於 Python 的超參數調整方法,Python 是機器學習中最受歡迎的編程語言之一。除了深入解釋每種方法的運作方式外,您還將使用決策圖來幫助您識別最適合您需求的調整方法。
您將從超參數調整的介紹開始,了解其重要性。接下來,您將學習針對各種使用案例和特定算法類型的最佳超參數調整方法。本書不僅涵蓋常見的網格搜尋或隨機搜尋,還包括其他強大的冷門方法。各章節還專門針對三大類超參數調整方法:全面搜尋、啟發式搜尋、貝葉斯優化和多忠實度優化。之後,您將學習如何使用 Scikit、Hyperopt、Optuna、NNI 和 DEAP 等頂尖框架來實現超參數調整。最後,您將涵蓋流行算法的超參數及最佳實踐,幫助您有效地調整超參數。
在本書結束時,您將具備完全控制機器學習模型的技能,並獲得最佳模型以達成最佳結果。
您將學到什麼:
- 發現超參數空間及超參數分佈類型
- 探索手動搜尋、網格搜尋和隨機搜尋,以及每種方法的優缺點
- 了解強大的冷門方法及最佳實踐
- 探索流行算法的超參數
- 發現如何在不同框架和庫中調整超參數
- 深入了解頂尖框架,如 Scikit、Hyperopt、Optuna、NNI 和 DEAP
- 掌握可以立即應用於您的機器學習模型的最佳實踐
本書適合誰:
本書適合正在使用 Python 的數據科學家和機器學習工程師,他們希望通過使用適當的超參數調整方法進一步提升其機器學習模型的性能。雖然需要對機器學習和 Python 編程有基本了解,但不需要具備 Python 中超參數調整的先前知識。