Adversarial Machine Learning (Hardcover)
暫譯: 對抗性機器學習 (精裝版)
Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein, J. D. Tygar
- 出版商: Cambridge
- 出版日期: 2019-02-21
- 售價: $1,560
- 貴賓價: 9.8 折 $1,529
- 語言: 英文
- 頁數: 338
- 裝訂: Hardcover
- ISBN: 1107043468
- ISBN-13: 9781107043466
-
相關分類:
Machine Learning
-
相關翻譯:
對抗機器學習 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
商品描述
Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race.
商品描述(中文翻譯)
由領先的研究者撰寫,這本完整的入門書籍匯集了在對抗環境中構建穩健機器學習所需的所有理論和工具。了解當對手主動污染數據以操縱統計推斷時,機器學習系統如何適應,學習最新的實用技術以調查系統安全性和執行穩健的數據分析,並深入了解設計有效對策以應對最新一波網路攻擊的新方法。書中詳細討論了隱私保護機制和分類器的近似最佳逃避,並通過深入的案例研究,強調了對傳統機器學習算法成功攻擊的電子郵件垃圾郵件和網路安全。這部開創性的作品提供了該領域當前技術狀態的全面概述及可能的未來方向,是計算機安全和機器學習領域的研究者、實踐者和學生,以及希望了解網路安全軍備競賽下一階段的人士必讀的書籍。