Transfer Learning
暫譯: 遷移學習

Yang, Qiang, Zhang, Yu, Dai, Wenyuan

  • 出版商: Cambridge
  • 出版日期: 2020-03-26
  • 售價: $3,010
  • 貴賓價: 9.5$2,860
  • 語言: 英文
  • 頁數: 390
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1107016908
  • ISBN-13: 9781107016903
  • 相關分類: 影像辨識 Image-recognition
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.

商品描述(中文翻譯)

轉移學習處理系統如何快速適應新情況、任務和環境的問題。它使機器學習系統能夠利用輔助數據和模型來幫助解決目標問題,特別是在可用數據量很少的情況下。這使得這些系統更加可靠和穩健,避免機器學習模型在面對不可預見的變化時過度偏離預期性能。在企業層面,轉移學習允許知識的重複使用,使得一次獲得的經驗可以反覆應用於現實世界。例如,可以下載並在計算機網絡邊緣進行調整的考慮用戶隱私的預訓練模型。這本自成一體、全面的參考書描述了標準算法,並展示了這些算法在不同轉移學習範式中的應用。它為新手提供了堅實的基礎,同時也為資深研究人員和開發者提供了新的見解。