Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning: Second Miccai Workshop, Dart 2020, and First Miccai Worksho
暫譯: 領域適應與表示轉移,以及分散式與協作學習:第二屆 Miccai 研討會,DART 2020,及第一屆 Miccai 研討會

Albarqouni, Shadi, Bakas, Spyridon, Kamnitsas, Konstantinos

  • 出版商: Springer
  • 出版日期: 2020-09-26
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 212
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030605477
  • ISBN-13: 9783030605476
  • 相關分類: JavaScript
  • 海外代購書籍(需單獨結帳)

商品描述

This book constitutes the refereed proceedings of the Second MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2020, and the First MICCAI Workshop on Distributed and Collaborative Learning, DCL 2020, held in conjunction with MICCAI 2020 in October 2020. The conference was planned to take place in Lima, Peru, but changed to an online format due to the Coronavirus pandemic.

For DART 2020, 12 full papers were accepted from 18 submissions. They deal with methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical settings by making them robust and consistent across different domains.

For DCL 2020, the 8 papers included in this book were accepted from a total of 12 submissions. They focus on the comparison, evaluation and discussion of methodological advancement and practical ideas about machine learning applied to problems where data cannot be stored in centralized databases; where information privacy is a priority; where it is necessary to deliver strong guarantees on the amount and nature of private information that may be revealed by the model as a result of training; and where it's necessary to orchestrate, manage and direct clusters of nodes participating in the same learning task.

商品描述(中文翻譯)

本書是第二屆MICCAI關於領域適應與表示轉移研討會(DART 2020)及第一屆MICCAI關於分散式與協作學習研討會(DCL 2020)的經過審稿的會議論文集,這兩場研討會於2020年10月與MICCAI 2020會議同時舉行。原定於秘魯利馬舉行的會議因新冠病毒疫情而改為線上形式。

在DART 2020中,從18篇投稿中接受了12篇完整論文。這些論文探討了方法論的進展和想法,旨在提高機器學習(ML)/深度學習(DL)方法在臨床環境中的適用性,使其在不同領域之間更加穩健和一致。

在DCL 2020中,本書收錄的8篇論文是從12篇投稿中接受的。這些論文專注於比較、評估和討論方法論的進展及關於機器學習應用於無法將數據存儲在集中式數據庫中的問題的實用想法;在信息隱私為優先考量的情況下;在需要對模型訓練過程中可能揭示的私密信息的數量和性質提供強有力的保證的情況下;以及在需要協調、管理和指導參與同一學習任務的節點集群的情況下。

類似商品