Computer Vision: Models, Learning, and Inference (Hardcover)
暫譯: 計算機視覺:模型、學習與推理(精裝版)

Dr Simon J. D. Prince

買這商品的人也買了...

商品描述

This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new image data. With minimal prerequisites, the book starts from the basics of probability and model fitting and works up to real examples that the reader can implement and modify to build useful vision systems. Primarily meant for advanced undergraduate and graduate students, the detailed methodological presentation will also be useful for practitioners of computer vision. - Covers cutting-edge techniques, including graph cuts, machine learning, and multiple view geometry. - A unified approach shows the common basis for solutions of important computer vision problems, such as camera calibration, face recognition, and object tracking. - More than 70 algorithms are described in sufficient detail to implement. - More than 350 full-color illustrations amplify the text. - The treatment is self-contained, including all of the background mathematics. - Additional resources at www.computervisionmodels.com.

商品描述(中文翻譯)

這本現代的電腦視覺書籍專注於在機率模型中進行學習和推斷,作為統一主題。它展示了如何使用訓練數據來學習觀察到的影像數據與我們希望估計的世界方面之間的關係,例如三維結構或物體類別,以及如何利用這些關係從新的影像數據中對世界進行新的推斷。這本書的前提條件非常少,從機率和模型擬合的基本概念開始,逐步進入讀者可以實現和修改的實際範例,以建立有用的視覺系統。本書主要針對高年級本科生和研究生,詳細的方法論介紹對於電腦視覺的實務工作者也將非常有用。

- 涵蓋尖端技術,包括圖切割、機器學習和多視角幾何。
- 統一的方法展示了解決重要電腦視覺問題的共同基礎,例如相機校準、臉部識別和物體追蹤。
- 描述了超過70種算法,詳細到足以實現。
- 超過350幅全彩插圖增強了文本內容。
- 本書內容自成體系,包括所有背景數學知識。
- 其他資源可在 www.computervisionmodels.com 獲得。