Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs (Paperback)
暫譯: 生成式人工智慧的提示工程:未來-proof 的輸入以獲得可靠的 AI 輸出 (平裝本)

Phoenix, James, Taylor, Mike

  • 出版商: O'Reilly
  • 出版日期: 2024-06-25
  • 定價: $2,820
  • 售價: 8.8$2,482 (限時優惠至 2025-02-02)
  • 語言: 英文
  • 頁數: 422
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 109815343X
  • ISBN-13: 9781098153434
  • 相關分類: 人工智慧
  • 立即出貨

買這商品的人也買了...

相關主題

商品描述

Large language models (LLMs) and diffusion models such as ChatGPT and Stable Diffusion have unprecedented potential. Because they have been trained on all the public text and images on the internet, they can make useful contributions to a wide variety of tasks. And with the barrier to entry greatly reduced today, practically any developer can harness LLMs and diffusion models to tackle problems previously unsuitable for automation.

With this book, you'll gain a solid foundation in generative AI, including how to apply these models in practice. When first integrating LLMs and diffusion models into their workflows, most developers struggle to coax reliable enough results from them to use in automated systems. Authors James Phoenix and Mike Taylor show you how a set of principles called prompt engineering can enable you to work effectively with AI.

Learn how to empower AI to work for you. This book explains:

  • The structure of the interaction chain of your program's AI model and the fine-grained steps in between
  • How AI model requests arise from transforming the application problem into a document completion problem in the model training domain
  • The influence of LLM and diffusion model architecture—and how to best interact with it
  • How these principles apply in practice in the domains of natural language processing, text and image generation, and code

商品描述(中文翻譯)

大型語言模型(LLMs)和擴散模型,如 ChatGPT 和 Stable Diffusion,具有前所未有的潛力。因為它們已經在互聯網上所有公開的文本和圖像上進行了訓練,所以它們可以對各種任務做出有用的貢獻。隨著入門門檻的顯著降低,幾乎任何開發者都可以利用 LLMs 和擴散模型來解決以前不適合自動化的問題。

在這本書中,您將獲得生成式 AI 的堅實基礎,包括如何在實踐中應用這些模型。當大多數開發者首次將 LLMs 和擴散模型整合到他們的工作流程中時,往往難以從中獲得足夠可靠的結果以用於自動化系統。作者 James Phoenix 和 Mike Taylor 向您展示了一組稱為提示工程(prompt engineering)的原則,這可以使您有效地與 AI 進行合作。

學習如何使 AI 為您工作。本書解釋了:

- 您的程式 AI 模型的互動鏈結構及其之間的細微步驟
- AI 模型請求如何源於將應用問題轉化為模型訓練領域中的文檔完成問題
- LLM 和擴散模型架構的影響,以及如何最佳地與其互動
- 這些原則在自然語言處理、文本和圖像生成以及程式碼領域中的實際應用