Low-Code AI: A Practical Project-Driven Introduction to Machine Learning (Paperback)
暫譯: 低代碼 AI:實用的專案驅動機器學習入門(平裝本)

Stripling, Gwendolyn, Abel, Michael

  • 出版商: O'Reilly
  • 出版日期: 2023-10-17
  • 定價: $2,680
  • 售價: 8.8$2,358 (限時優惠至 2025-03-31)
  • 語言: 英文
  • 頁數: 325
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1098146824
  • ISBN-13: 9781098146825
  • 相關分類: Machine Learning
  • 立即出貨

買這商品的人也買了...

商品描述

Take a data-first and use-case driven approach to understanding machine learning and deep learning concepts with Low-Code AI. This hands-on guide presents three problem-focused ways to learn ML: no code using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. You'll learn key ML concepts by using real-world datasets with realistic problems.

Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data, feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications.

You'll learn how to:

  • Distinguish structured and unstructured data and understand the different challenges they present
  • Visualize and analyze data
  • Preprocess data for input into a machine learning model
  • Differentiate between the regression and classification supervised learning models
  • Compare different machine learning model types and architectures, from no code to low-code to custom training
  • Design, implement, and tune ML models
  • Export data to a GitHub repository for data management and governance

商品描述(中文翻譯)

採用以數據為先和用例驅動的方法來理解機器學習和深度學習概念,使用低代碼人工智慧。本實用指南提供三種以問題為中心的學習機器學習(ML)的方法:無代碼使用 AutoML、低代碼使用 BigQuery ML,以及自定義代碼使用 scikit-learn 和 Keras。您將通過使用現實世界的數據集和真實問題來學習關鍵的機器學習概念。

商業和數據分析師將通過詳細的數據驅動方法獲得基於項目的機器學習/人工智慧介紹:加載和分析數據、將數據輸入到機器學習模型中;構建、訓練和測試;以及將模型部署到生產環境中。作者 Michael Abel 和 Gwendolyn Stripling 將向您展示如何為零售、醫療保健、金融服務、能源和電信構建機器學習模型。

您將學習如何:

- 區分結構化數據和非結構化數據,並理解它們所帶來的不同挑戰
- 可視化和分析數據
- 對數據進行預處理,以便輸入到機器學習模型中
- 區分回歸和分類的監督學習模型
- 比較不同的機器學習模型類型和架構,從無代碼到低代碼再到自定義訓練
- 設計、實施和調整機器學習模型
- 將數據導出到 GitHub 存儲庫以進行數據管理和治理