Data Science: The Hard Parts: Techniques for Excelling at Data Science (Paperback)
Vaughan, Daniel
- 出版商: O'Reilly
- 出版日期: 2023-12-05
- 定價: $2,310
- 售價: 9.0 折 $2,079
- 語言: 英文
- 頁數: 254
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098146476
- ISBN-13: 9781098146474
-
相關分類:
Excel、Data Science
-
相關翻譯:
資料科學:困難部分 (Data Science: The Hard Parts: Techniques for Excelling at Data Science) (繁中版)
立即出貨
買這商品的人也買了...
-
$680$537 -
$534$507 -
$2,993$2,835 -
$509Python + Excel/Word/PPT 一本通
-
$834$792 -
$305知識圖譜:方法、工具與案例
-
$980$774 -
$580$458
商品描述
This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "big themes" of the discipline--machine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one.
Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and a qualified data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create value and train data scientists from different companies and industries.
With this book, you will:
- Understand how data science creates value
- Deliver compelling narratives to sell your data science project
- Build a business case using unit economics principles
- Create new features for a ML model using storytelling
- Learn how to decompose KPIs
- Perform growth decompositions to find root causes for changes in a metric
Daniel Vaughan is head of data at Clip, the leading paytech company in Mexico. He's the author of Analytical Skills for AI and Data Science (O'Reilly).