Product Analytics: Applied Data Science Techniques for Actionable Consumer Insights (Paperback)
暫譯: 產品分析:可行的消費者洞察應用數據科學技術

Rodrigues-Craig, Joanne

買這商品的人也買了...

相關主題

商品描述

This guide shows how to combine data science with social science to gain unprecedented insight into customer behavior, so you can change it. Joanne Rodrigues-Craig bridges the gap between predictive data science and statistical techniques that reveal why important things happen -- why customers buy more, or why they immediately leave your site -- so you can get more behaviors you want and less you don't.
Drawing on extensive enterprise experience and deep knowledge of demographics and sociology, Rodrigues-Craig shows how to create better theories and metrics, so you can accelerate the process of gaining insight, altering behavior, and earning business value. You'll learn how to:

  • Develop complex, testable theories for understanding individual and social behavior in web products
  • Think like a social scientist and contextualize individual behavior in today's social environments
  • Build more effective metrics and KPIs for any web product or system
  • Conduct more informative and actionable A/B tests
  • Explore causal effects, reflecting a deeper understanding of the differences between correlation and causation
  • Alter user behavior in a complex web product
  • Understand how relevant human behaviors develop, and the prerequisites for changing them
  • Choose the right statistical techniques for common tasks such as multistate and uplift modeling
  • Use advanced statistical techniques to model multidimensional systems
  • Do all of this in R (with sample code available in a separate code manual)

商品描述(中文翻譯)

這本指南展示了如何將數據科學與社會科學結合,以獲得前所未有的客戶行為洞察,從而改變這些行為。Joanne Rodrigues-Craig 橋接了預測數據科學與統計技術之間的鴻溝,這些技術揭示了重要事件發生的原因——為什麼客戶購買更多,或為什麼他們立即離開您的網站——以便您能夠獲得更多您想要的行為,並減少不想要的行為。

基於豐富的企業經驗和對人口統計學及社會學的深刻理解,Rodrigues-Craig 展示了如何創建更好的理論和指標,從而加速獲得洞察、改變行為和創造商業價值的過程。您將學習如何:

- 開發複雜且可測試的理論,以理解網絡產品中的個體和社會行為
- 像社會科學家一樣思考,並將個體行為置於當今社會環境中
- 為任何網絡產品或系統建立更有效的指標和 KPI
- 進行更具信息性和可行性的 A/B 測試
- 探索因果效應,反映對相關性和因果性之間差異的更深刻理解
- 在複雜的網絡產品中改變用戶行為
- 理解相關人類行為的發展及其改變的前提條件
- 為多狀態和提升建模等常見任務選擇合適的統計技術
- 使用先進的統計技術來建模多維系統
- 在 R 中完成所有這些工作(示例代碼可在單獨的代碼手冊中獲得)