Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning 2nd Edition
暫譯: Python 機器學習食譜:從預處理到深度學習的實用解決方案(第二版)
Gallatin, Kyle, Albon, Chris
- 出版商: O'Reilly
- 出版日期: 2023-09-05
- 定價: $2,780
- 售價: 8.8 折 $2,446
- 語言: 英文
- 頁數: 413
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098135725
- ISBN-13: 9781098135720
-
相關分類:
Python、程式語言、Machine Learning、DeepLearning
立即出貨
買這商品的人也買了...
-
$505Processing 編程學習指南(原書第2版)
-
$450$356 -
$1,929$1,827 -
$407Java 從入門到精通, 6/e
-
$4,200$3,990 -
$500$395 -
$2,384Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images (Paperback)
-
$1,840AI and Machine Learning for On-Device Development: A Programmer's Guide
-
$1,900$1,805 -
$2,300$2,185 -
$539$512 -
$780$663 -
$1,200$948 -
$1,950$1,853 -
$780$616 -
$1,690$1,606 -
$630$498 -
$2,100$1,995 -
$2,150$2,043 -
$560$442 -
$750$593 -
$720$562 -
$520$410 -
$780$616 -
$1,980$1,881
相關主題
商品描述
This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way from loading data to training models and leveraging neural networks.
Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications.
You'll find recipes for:
- Vectors, matrices, and arrays
- Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources
- Handling numerical and categorical data, text, images, and dates and times
- Dimensionality reduction using feature extraction or feature selection
- Model evaluation and selection
- Linear and logical regression, trees and forests, and k-nearest neighbors
- Support vector machines (SVM), naive Bayes, clustering, and tree-based models
- Saving and loading trained models from multiple frameworks
商品描述(中文翻譯)
這本實用指南提供了超過 200 個獨立的範例,幫助您解決在工作中可能遇到的機器學習挑戰。如果您對 Python 及其庫(包括 pandas 和 scikit-learn)感到熟悉,您將能夠從加載數據到訓練模型及利用神經網絡,針對特定問題進行處理。
這個更新版中的每個範例都包含可以複製、粘貼並使用玩具數據集運行的代碼,以確保其有效性。從那裡,您可以根據自己的使用案例或應用程序調整這些範例。範例中包含的討論解釋了解決方案並提供有意義的背景。超越理論和概念,學習構建可運行的機器學習應用所需的細節。
您將找到以下範例:
- 向量、矩陣和數組
- 處理來自 CSV、JSON、SQL、數據庫、雲存儲和其他來源的數據
- 處理數值和類別數據、文本、圖像以及日期和時間
- 使用特徵提取或特徵選擇進行降維
- 模型評估和選擇
- 線性和邏輯回歸、樹和森林、以及 k 最近鄰
- 支持向量機(SVM)、朴素貝葉斯、聚類和基於樹的模型
- 從多個框架保存和加載訓練好的模型