Practical Data Privacy: Enhancing Privacy and Security in Data (Paperback)
暫譯: 實用數據隱私:增強數據的隱私與安全
Jarmul, Katharine
買這商品的人也買了...
-
$900Network Security Assessment: Know Your Network, 2/e (Paperback)
-
$2,233$2,115 -
$1,750$1,663 -
$2,043$1,935 -
$1,758$1,665 -
$2,242$2,124
商品描述
Between major privacy regulations like the GDPR and CCPA and expensive and notorious data breaches, there has never been so much pressure for data scientists to ensure data privacy. Unfortunately, integrating privacy into your data science workflow is still complicated. This essential guide will give you solid advice and best practices on breakthrough privacy-enhancing technologies such as encrypted learning and differential privacy--as well as a look at emerging technologies and techniques in the field.
Practical Data Privacy answers important questions such as:
- What do privacy regulations like GDPR and CCPA mean for my project?
- What does "anonymized data" really mean?
- Should I anonymize the data? If so, how?
- Which privacy techniques fit my project and how do I incorporate them?
- What are the differences and similarities between privacy-preserving technologies and methods?
- How do I utilize an open-source library for a privacy-enhancing technique?
- How do I ensure that my projects are secure by default and private by design?
- How do I create a plan for internal policies or a specific data project that incorporates privacy and security from the start?
商品描述(中文翻譯)
在 GDPR 和 CCPA 等主要隱私法規以及昂貴且臭名昭著的數據洩露事件之間,數據科學家面臨著前所未有的壓力,必須確保數據隱私。不幸的是,將隱私整合到數據科學工作流程中仍然相當複雜。本指南將為您提供有關突破性隱私增強技術的可靠建議和最佳實踐,例如加密學習和差分隱私,以及對該領域新興技術和技術的介紹。
《實用數據隱私》回答了以下重要問題:
- GDPR 和 CCPA 等隱私法規對我的項目意味著什麼?
- “匿名數據”究竟是什麼意思?
- 我應該對數據進行匿名化嗎?如果是,該怎麼做?
- 哪些隱私技術適合我的項目,我該如何將它們納入?
- 隱私保護技術和方法之間有什麼異同?
- 我如何利用開源庫來實現隱私增強技術?
- 我如何確保我的項目在默認情況下是安全的,並且在設計上是私密的?
- 我如何制定一個計劃,為內部政策或特定數據項目從一開始就納入隱私和安全?