Learning Data Science: Data Wrangling, Exploration, Visualization, and Modeling with Python (Paperback)
暫譯: 學習資料科學:使用 Python 進行資料整理、探索、視覺化與建模 (平裝本)

Lau, Sam, Gonzalez, Joseph, Nolan, Deborah

  • 出版商: O'Reilly
  • 出版日期: 2023-10-24
  • 定價: $3,050
  • 售價: 8.8$2,684
  • 語言: 英文
  • 頁數: 594
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1098113004
  • ISBN-13: 9781098113001
  • 相關分類: Python程式語言Data Science
  • 立即出貨

買這商品的人也買了...

相關主題

商品描述

As an aspiring data scientist, you appreciate why organizations rely on data for important decisions--whether it's for companies designing websites, cities deciding how to improve services, or scientists discovering how to stop the spread of disease. And you want the skills required to distill a messy pile of data into actionable insights. We call this the data science lifecycle: the process of collecting, wrangling, analyzing, and drawing conclusions from data.

Learning Data Science is the first book to cover foundational skills in both programming and statistics that encompass this entire lifecycle. It's aimed at those who wish to become data scientists or who already work with data scientists, and at data analysts who wish to cross the "technical/nontechnical" divide. If you have a basic knowledge of Python programming, you'll learn how to work with data using industry-standard tools like pandas.

  • Refine a question of interest to one that can be studied with data
  • Pursue data collection that may involve text processing, web scraping, etc.
  • Glean valuable insights about data through data cleaning, exploration, and visualization
  • Learn how to use modeling to describe the data
  • Generalize findings beyond the data

商品描述(中文翻譯)

作為一名有抱負的資料科學家,您了解為什麼組織依賴數據來做出重要決策——無論是設計網站的公司、決定如何改善服務的城市,還是發現如何阻止疾病擴散的科學家。您希望獲得將雜亂數據提煉為可行見解所需的技能。我們稱之為資料科學生命週期:從數據中收集、整理、分析並得出結論的過程。

《學習資料科學》是第一本涵蓋整個生命週期所需的編程和統計基礎技能的書籍。它針對希望成為資料科學家或已經與資料科學家合作的人,以及希望跨越「技術/非技術」界限的資料分析師。如果您對 Python 編程有基本了解,您將學會如何使用行業標準工具如 pandas 來處理數據。

- 將感興趣的問題精煉為可以用數據研究的問題
- 進行數據收集,可能涉及文本處理、網頁爬蟲等
- 通過數據清理、探索和可視化獲取有價值的數據見解
- 學習如何使用建模來描述數據
- 將發現推廣到數據之外