Data Visualization with Python and JavaScript: Scrape, Clean, Explore, and Transform Your Data, 2/e
暫譯: 使用 Python 和 JavaScript 進行資料視覺化:擷取、清理、探索與轉換您的資料,第二版
Dale, Kyran
- 出版商: O'Reilly
- 出版日期: 2023-01-17
- 定價: $2,290
- 售價: 8.0 折 $1,832
- 語言: 英文
- 頁數: 566
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098111877
- ISBN-13: 9781098111878
-
相關分類:
JavaScript、Python、程式語言、Data-visualization
-
相關翻譯:
資料視覺化|使用 Python 與 JavaScript, 2/e (Data Visualization with Python and JavaScript: Scrape, Clean, Explore, and Transform Your Data, 2/e) (繁中版)
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$1,690$1,606 -
$3,390$3,221 -
$380$300 -
$780$616 -
$311你好,ChatGPT AI ChatGPT GPT-3 GPT-4
-
$490$387 -
$2,446Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, 2/e (Paperback)
-
$630$498 -
$680$537 -
$1,480$1,450 -
$720$569 -
$2,100$1,995
相關主題
商品描述
How do you turn raw, unprocessed, or malformed data into dynamic, interactive web visualizations? In this practical book, author Kyran Dale shows data scientists and analysts--as well as Python and JavaScript developers--how to create the ideal toolchain for the job. By providing engaging examples and stressing hard-earned best practices, this guide teaches you how to leverage the power of best-of-breed Python and JavaScript libraries.
Python provides accessible, powerful, and mature libraries for scraping, cleaning, and processing data. And while JavaScript is the best language when it comes to programming web visualizations, its data processing abilities can't compare with Python's. Together, these two languages are a perfect complement for creating a modern web-visualization toolchain. This book gets you started.
You'll learn how to:
- Obtain data you need programmatically, using scraping tools or web APIs: Requests, Scrapy, Beautiful Soup
- Clean and process data using Python's heavyweight data processing libraries within the NumPy ecosystem: Jupyter notebooks with pandas+Matplotlib+Seaborn
- Deliver the data to a browser with static files or by using Flask, the lightweight Python server, and a RESTful API
- Pick up enough web development skills (HTML, CSS, JS) to get your visualized data on the web
- Use the data you've mined and refined to create web charts and visualizations with Plotly, D3, Leaflet, and other libraries
商品描述(中文翻譯)
如何將原始、未處理或格式不正確的數據轉換為動態、互動的網頁視覺化?在這本實用的書籍中,作者 Kyran Dale 向數據科學家和分析師,以及 Python 和 JavaScript 開發者展示如何為這項工作創建理想的工具鏈。通過提供引人入勝的範例並強調經過實踐的最佳做法,本指南教你如何利用一流的 Python 和 JavaScript 函式庫的力量。
Python 提供了可訪問的、強大且成熟的函式庫,用於抓取、清理和處理數據。而雖然 JavaScript 是編寫網頁視覺化的最佳語言,但其數據處理能力無法與 Python 相提並論。這兩種語言共同構成了創建現代網頁視覺化工具鏈的完美補充。本書將幫助你入門。
你將學會如何:
- 使用抓取工具或網頁 API 程式化地獲取所需數據:Requests、Scrapy、Beautiful Soup
- 使用 Python 的重量級數據處理函式庫在 NumPy 生態系統中清理和處理數據:使用 pandas + Matplotlib + Seaborn 的 Jupyter 筆記本
- 通過靜態文件或使用輕量級 Python 伺服器 Flask 和 RESTful API 將數據傳遞到瀏覽器
- 獲得足夠的網頁開發技能(HTML、CSS、JS),以便將你的視覺化數據上傳到網路
- 使用你挖掘和精煉的數據,利用 Plotly、D3、Leaflet 和其他函式庫創建網頁圖表和視覺化