Ensemble Methods: Foundations and Algorithms
暫譯: 集成方法:基礎與演算法

Zhou, Zhi-Hua

  • 出版商: CRC
  • 出版日期: 2025-03-10
  • 售價: $3,130
  • 貴賓價: 9.5$2,974
  • 語言: 英文
  • 頁數: 348
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1032960604
  • ISBN-13: 9781032960609
  • 相關分類: Algorithms-data-structures
  • 尚未上市,無法訂購

商品描述

Ensemble methods that train multiple learners and then combine them to use, with Boosting and Bagging as representatives, are well-known machine learning approaches. It has become common sense that an ensemble is usually significantly more accurate than a single learner, and ensemble methods have already achieved great success in various real-world tasks.

Twelve years have passed since the publication of the first edition of the book in 2012 (Japanese and Chinese versions published in 2017 and 2020, respectively). Many significant advances in this field have been developed. First, many theoretical issues have been tackled, for example, the fundamental question of why AdaBoost seems resistant to overfitting gets addressed, so that now we understand much more about the essence of ensemble methods. Second, ensemble methods have been well developed in more machine learning fields, e.g., isolation forest in anomaly detection, so that now we have powerful ensemble methods for tasks beyond conventional supervised learning.

Third, ensemble mechanisms have also been found helpful in emerging areas such as deep learning and online learning. This edition expands on the previous one with additional content to reflect the significant advances in the field, and is written in a concise but comprehensive style to be approachable to readers new to the subject.

商品描述(中文翻譯)

集成方法訓練多個學習者,然後將它們結合使用,以 Boosting 和 Bagging 為代表,是著名的機器學習方法。集成通常比單一學習者準確得多已成為常識,而集成方法在各種現實世界任務中已經取得了巨大的成功。

自2012年首次出版本書的第一版以來已經過了十二年(日文和中文版本分別於2017年和2020年出版)。這個領域已經發展出許多重要的進展。首先,許多理論問題已經得到解決,例如,為什麼 AdaBoost 似乎對過擬合具有抵抗力的基本問題已經得到解答,因此我們現在對集成方法的本質有了更深入的理解。其次,集成方法在更多的機器學習領域得到了良好的發展,例如,異常檢測中的孤立森林,使我們現在擁有強大的集成方法來處理超出傳統監督學習的任務。

第三,集成機制在深度學習和在線學習等新興領域也被發現是有幫助的。本版在前一版的基礎上擴展了額外的內容,以反映該領域的重大進展,並以簡潔而全面的風格撰寫,以便於對該主題不熟悉的讀者理解。

作者簡介

Zhi-Hua Zhou, Professor of Computer Science and Artificial Intelligence at Nanjing University, President of IJCAI trustee, Fellow of the ACM, AAAI, AAAS, IEEE, recipient of the IEEE Computer Society Edward J. McCluskey Technical Achievement Award, CCF-ACM Artificial Intelligence Award.

作者簡介(中文翻譯)

周志華,南京大學計算機科學與人工智慧教授,IJCAI 受託人會長,ACM、AAAI、AAAS、IEEE 會士,IEEE 計算機學會愛德華·J·麥克拉斯基技術成就獎獲得者,CCF-ACM 人工智慧獎獲得者。