Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications
暫譯: 格基約簡:LLL 演算法及其應用介紹
Bremner, Murray R.
- 出版商: CRC
- 出版日期: 2024-10-14
- 售價: $2,730
- 貴賓價: 9.5 折 $2,594
- 語言: 英文
- 頁數: 334
- 裝訂: Quality Paper - also called trade paper
- ISBN: 103292182X
- ISBN-13: 9781032921822
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
First developed in the early 1980s by Lenstra, Lenstra, and Lovász, the LLL algorithm was originally used to provide a polynomial-time algorithm for factoring polynomials with rational coefficients. It very quickly became an essential tool in integer linear programming problems and was later adapted for use in cryptanalysis. This book provides an introduction to the theory and applications of lattice basis reduction and the LLL algorithm. With numerous examples and suggested exercises, the text discusses various applications of lattice basis reduction to cryptography, number theory, polynomial factorization, and matrix canonical forms.
商品描述(中文翻譯)
最早由 Lenstra、Lenstra 和 Lovász 於1980年代初期開發的 LLL 演算法,最初用於提供一個多項式時間的演算法來因式分解具有有理係數的多項式。它很快成為整數線性規劃問題中的一個重要工具,並且後來被改編用於密碼分析。本書介紹了格基減少和 LLL 演算法的理論及應用。透過眾多範例和建議練習,文本討論了格基減少在密碼學、數論、多項式因式分解和矩陣標準型等方面的各種應用。
作者簡介
Murray R. Bremner received a Bachelor of Science from the University of Saskatchewan in 1981, a Master of Computer Science from Concordia University in Montreal in 1984, and a Doctorate in Mathematics from Yale University in 1989. He spent one year as a Postdoctoral Fellow at the Mathematical Sciences Research Institute in Berkeley, and three years as an Assistant Professor in the Department of Mathematics at the University of Toronto. He returned to the Department of Mathematics and Statistics at the University of Saskatchewan in 1993 and was promoted to Professor in 2002. His research interests focus on the application of computational methods to problems in the theory of linear nonassociative algebras, and he has had more than 50 papers published or accepted by refereed journals in this area.
作者簡介(中文翻譯)
Murray R. Bremner 於1981年獲得薩斯喀徹溫大學的理學士學位,1984年在蒙特利爾的康考迪亞大學獲得計算機科學碩士學位,並於1989年在耶魯大學獲得數學博士學位。他在伯克利的數學科學研究所擔任了一年的博士後研究員,並在多倫多大學數學系擔任了三年的助理教授。1993年,他回到薩斯喀徹溫大學的數學與統計系,並於2002年晉升為教授。他的研究興趣集中在計算方法應用於線性非結合代數理論中的問題,並在該領域發表或被同行評審的期刊接受的論文超過50篇。