Machine Learning in Farm Animal Behavior Using Python
暫譯: 使用 Python 進行農場動物行為的機器學習
Kleanthous, Natasa, Hussain, Abir
- 出版商: CRC
- 出版日期: 2025-03-06
- 售價: $6,190
- 貴賓價: 9.5 折 $5,881
- 語言: 英文
- 頁數: 394
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032628634
- ISBN-13: 9781032628639
-
相關分類:
ARM、Python、程式語言、Machine Learning
海外代購書籍(需單獨結帳)
商品描述
This book is a comprehensive guide to applying machine learning to animal behavior analysis, focusing on activity recognition in farm animals. It begins by introducing key concepts of animal behavior and ethology, followed by an exploration of machine learning techniques, including supervised, unsupervised, semi-supervised, and reinforcement learning. The practical section covers essential steps like data collection, preprocessing, exploratory data analysis, feature extraction, model training, and evaluation, using Python.
The book emphasizes the importance of high-quality data and discusses various sensors and annotation methods for effective data collection. It addresses key machine learning challenges such as generalization and data issues. Advanced topics include feature selection, model selection, hyperparameter tuning, and deep learning algorithms. Practical examples and Python implementations are provided throughout, offering hands-on experience for researchers, students, and professionals aiming to apply machine learning to animal behavior analysis.
商品描述(中文翻譯)
這本書是應用機器學習於動物行為分析的綜合指南,重點在於農場動物的活動識別。書中首先介紹動物行為和動物生態學的關鍵概念,接著探討機器學習技術,包括監督式學習、非監督式學習、半監督式學習和強化學習。實務部分涵蓋了數據收集、預處理、探索性數據分析、特徵提取、模型訓練和評估等基本步驟,使用 Python 語言進行實作。
本書強調高品質數據的重要性,並討論各種傳感器和標註方法以有效收集數據。它還針對機器學習中的關鍵挑戰,如泛化能力和數據問題進行探討。進階主題包括特徵選擇、模型選擇、超參數調整和深度學習算法。全書提供了實際範例和 Python 實作,為研究人員、學生和專業人士提供了應用機器學習於動物行為分析的實踐經驗。
作者簡介
Natasa Kleanthous holds a BSc in Management and Information Systems from the University of Nicosia, and an MSc in Computing and Information Systems from Liverpool John Moores University, UK. She earned her PhD from Liverpool John Moores University in 2021. Her research interests include machine learning, embedded systems, the Internet of Things, virtual fencing systems, signal processing, wearable devices, and computer vision. Natasa is the director of O&P Electronics and Robotics Ltd and founder of Anyfence A.I Ltd, a startup focused on machine learning-driven animal behavior recognition combined with virtual fencing technology, aimed at developing smart devices for the farming industry.
Abir Hussain is a professor of Image and Signal Processing at the University of Sharjah, UAE, and a visiting professor at Liverpool John Moores University, UK. She earned her PhD at The University of Manchester (UMIST) in 2000, with a thesis on Polynomial Neural Networks for Image and Signal Processing. Abir has published extensively in areas such as neural networks, signal prediction, telecommunications fraud detection, and image compression. Her research focuses on higher-order and recurrent neural networks, with applications in e-health and medical image compression. She has supervised numerous PhD and MPhil students, developed neural network architectures with her research students, and serves as an external examiner for research degrees. She is also one of the initiators and chairs of the Development in e-Systems Engineering (DeSE) conference series.
作者簡介(中文翻譯)
Natasa Kleanthous 擁有尼科西亞大學的管理與資訊系統學士學位,以及英國利物浦約翰摩爾斯大學的計算與資訊系統碩士學位。她於2021年在利物浦約翰摩爾斯大學獲得博士學位。她的研究興趣包括機器學習、嵌入式系統、物聯網、虛擬圍欄系統、信號處理、可穿戴設備和計算機視覺。Natasa 是 O&P Electronics and Robotics Ltd 的董事,也是 Anyfence A.I Ltd 的創始人,該初創公司專注於結合虛擬圍欄技術的機器學習驅動的動物行為識別,旨在為農業行業開發智能設備。
Abir Hussain 是阿聯酋沙迦大學的影像與信號處理教授,並且是英國利物浦約翰摩爾斯大學的訪問教授。她於2000年在曼徹斯特大學(UMIST)獲得博士學位,論文主題為用於影像與信號處理的多項式神經網絡。Abir 在神經網絡、信號預測、電信詐騙檢測和影像壓縮等領域發表了大量研究。她的研究重點是高階和遞迴神經網絡,應用於電子健康和醫學影像壓縮。她指導了許多博士和碩士研究生,與她的研究生一起開發神經網絡架構,並擔任研究學位的外部考官。她也是電子系統工程發展(DeSE)會議系列的發起人之一及主席。