Artificial Intelligence Assisted Structural Optimization
暫譯: 人工智慧輔助結構優化

Challapalli, Adithya, Li, Guoqiang

  • 出版商: CRC
  • 出版日期: 2025-02-27
  • 售價: $5,550
  • 貴賓價: 9.5$5,273
  • 語言: 英文
  • 頁數: 208
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 103250885X
  • ISBN-13: 9781032508856
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

商品描述

Artificial Intelligence Assisted Structural Optimization explores the use of machine learning and correlation analysis within the forward design and inverse design frameworks to design and optimize lightweight load-bearing structures as well as mechanical metamaterials.

Discussing both machine learning and design analysis in detail, this book enables readers to optimize their designs using a data-driven approach. This book discusses the basics of the materials utilized, for example, shape memory polymers, and the manufacturing approach employed, such as 3D or 4D printing. Additionally, the book discusses the use of forward design and inverse design frameworks to discover novel lattice unit cells and thin-walled cellular unit cells with enhanced mechanical and functional properties such as increased mechanical strength, heightened natural frequency, strengthened impact tolerance, and improved recovery stress. Inverse design methodologies using generative adversarial networks are proposed to further investigate and improve these structures. Detailed discussions on fingerprinting approaches, machine learning models, structure screening techniques, and typical Python codes are provided in the book.

The book provides detailed guidance for both students and industry engineers to optimize their structural designs using machine learning.

商品描述(中文翻譯)

《人工智慧輔助結構優化》探討了在前向設計和反向設計框架內使用機器學習和相關分析來設計和優化輕量化承載結構以及機械超材料。

本書詳細討論了機器學習和設計分析,使讀者能夠使用數據驅動的方法來優化他們的設計。本書討論了所使用材料的基本知識,例如形狀記憶聚合物,以及所採用的製造方法,如3D或4D列印。此外,本書還討論了使用前向設計和反向設計框架來發現新穎的格子單元和薄壁細胞單元,這些單元具有增強的機械和功能特性,例如提高的機械強度、增強的自然頻率、加強的抗衝擊能力和改善的恢復應力。提出了使用生成對抗網絡的反向設計方法,以進一步研究和改善這些結構。本書提供了有關指紋識別方法、機器學習模型、結構篩選技術和典型Python代碼的詳細討論。

本書為學生和業界工程師提供了詳細的指導,以使用機器學習優化他們的結構設計。

作者簡介

Adithya Challapalli earned an MS at the University of North Texas (UNT) in mechanical and energy engineering and a PhD at Louisiana State University (LSU) in materials engineering, engineering science. Concurrently, he is a project engineer at Graphic Packaging International focusing on optimizing sustainable and renewable products.

Guoqiang Li earned a BS, an MS, and a PhD at Hebei University of Technology, Beijing University of Technology, and Southeast University, respectively, all in civil engineering. He received his postdoc training in mechanical engineering at Louisiana State University (LSU). He is the Major Morris S. and DeEtte A. Anderson Memorial alumni professor and holder of the John W. Rhea Jr. Professorship in Engineering in the Department of Mechanical and Industrial Engineering at LSU. He is also the associate vice provost of the Graduate School at LSU. Concurrently, he is a distinguished research professor in the Department of Mechanical Engineering at Southern University, Baton Rouge, Louisiana. His research interests include engineering materials, engineering structures, manufacturing, and engineering mechanics. He currently serves as an associate editor for the ASCE Journal of Materials in Civil Engineering, an editorial board member for the journal Scientific Reports, an Associate Editor for the journal Cleaner Materials, and the specialty editor of Frontiers in Mechanical Engineering: Solid and Structural Mechanics. He has received over 40 awards and recognitions for his research, mentoring, and services.

作者簡介(中文翻譯)

阿迪提亞·查拉帕利在北德克薩斯大學(UNT)獲得機械與能源工程碩士學位,並在路易斯安那州立大學(LSU)獲得材料工程及工程科學博士學位。目前,他在Graphic Packaging International擔任專案工程師,專注於優化可持續和可再生產品。

李國強在河北工業大學、北京工業大學和東南大學分別獲得學士、碩士和博士學位,均為土木工程。他在路易斯安那州立大學(LSU)接受機械工程的博士後訓練。他是LSU機械與工業工程系的莫里斯·安德森紀念校友教授及約翰·W·瑞亞二世工程教授。他同時擔任LSU研究生院的副教務長。目前,他也是路易斯安那州巴吞魯日南方大學機械工程系的傑出研究教授。他的研究興趣包括工程材料、工程結構、製造和工程力學。他目前擔任ASCE《土木工程材料期刊》的副編輯、《科學報告》期刊的編輯委員會成員、《清潔材料》期刊的副編輯,以及《機械工程前沿:固體與結構力學》的專題編輯。他因其研究、指導和服務獲得超過40項獎項和榮譽。

最後瀏覽商品 (20)