Recommender Systems: A Multi-Disciplinary Approach
暫譯: 推薦系統:多學科方法

Roy, Monideepa, Kar, Pushpendu, Datta, Sujoy

  • 出版商: CRC
  • 出版日期: 2024-12-19
  • 售價: $2,430
  • 貴賓價: 9.5$2,309
  • 語言: 英文
  • 頁數: 260
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032333227
  • ISBN-13: 9781032333229
  • 相關分類: 推薦系統
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Recommender Systems: A Multi-Disciplinary Approach presents a multi-disciplinary approach for the development of recommender systems. It explains different types of pertinent algorithms with their comparative analysis and their role for different applications. This book explains the big data behind recommender systems, the marketing benefits, how to make good decision support systems, the role of machine learning and artificial networks, and the statistical models with two case studies. It shows how to design attack resistant and trust-centric recommender systems for applications dealing with sensitive data.

Features of this book:

  • Identifies and describes recommender systems for practical uses
  • Describes how to design, train, and evaluate a recommendation algorithm
  • Explains migration from a recommendation model to a live system with users
  • Describes utilization of the data collected from a recommender system to understand the user preferences
  • Addresses the security aspects and ways to deal with possible attacks to build a robust system

This book is aimed at researchers and graduate students in computer science, electronics and communication engineering, mathematical science, and data science.

商品描述(中文翻譯)

《推薦系統:多學科方法》提出了一種多學科的方法來開發推薦系統。它解釋了不同類型的相關算法,並進行了比較分析,說明它們在不同應用中的角色。本書闡述了推薦系統背後的大數據、市場營銷的好處、如何建立良好的決策支持系統、機器學習和人工神經網絡的角色,以及兩個案例研究中的統計模型。它展示了如何設計抗攻擊和以信任為中心的推薦系統,以應對處理敏感數據的應用。

本書的特點:
- 確定並描述推薦系統的實際應用
- 描述如何設計、訓練和評估推薦算法
- 解釋如何將推薦模型遷移到具有用戶的實時系統
- 描述如何利用從推薦系統收集的數據來理解用戶偏好
- 關注安全方面及應對可能攻擊的方法,以建立穩健的系統

本書旨在為計算機科學、電子與通信工程、數學科學和數據科學的研究人員和研究生提供參考。

作者簡介

Monideepa Roy, Pushpendu Kar, Sujoy Datta

作者簡介(中文翻譯)

莫尼迪帕·羅伊,普什彭杜·卡爾,蘇喬伊·達塔