Machine Learning for Neuroscience: A Systematic Approach

Easttom, Chuck

  • 出版商: CRC
  • 出版日期: 2023-07-31
  • 售價: $3,990
  • 貴賓價: 9.5$3,791
  • 語言: 英文
  • 頁數: 290
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1032136723
  • ISBN-13: 9781032136721
  • 相關分類: Machine Learning
  • 下單後立即進貨 (約2~4週)

相關主題

商品描述

This book addresses the growing need for machine learning and data mining in neuroscience. The book offers a basic overview of the neuroscience, machine learning and the required math and programming necessary to develop reliable working models. The material is presented in a easy to follow user-friendly manner and is replete with fully working machine learning code. Machine Learning for Neuroscience: A Systematic Approach, tackles the needs of neuroscience researchers and practitioners that have very little training relevant to machine learning. The first section of the book provides an overview of necessary topics in order to delve into machine learning, including basic linear algebra and Python programming. The second section provides an overview of neuroscience and is directed to the computer science oriented readers. The section covers neuroanatomy and physiology, cellular neuroscience, neurological disorders and computational neuroscience. The third section of the book then delves into how to apply machine learning and data mining to neuroscience and provides coverage of artificial neural networks (ANN), clustering, and anomaly detection. The book contains fully working code examples with downloadable working code. It also contains lab assignments and quizzes, making it appropriate for use as a textbook. The primary audience is neuroscience researchers who need to delve into machine learning, programmers assigned neuroscience related machine learning projects and students studying methods in computational neuroscience.

商品描述(中文翻譯)

這本書探討了神經科學領域中機器學習和數據挖掘的日益增長的需求。該書提供了神經科學、機器學習以及開發可靠工作模型所需的數學和編程的基本概述。材料以易於理解和使用的方式呈現,並且包含完整的機器學習代碼。《神經科學的機器學習:系統方法》滿足了神經科學研究人員和實踐者對機器學習相關培訓需求非常有限的需求。該書的第一部分提供了進入機器學習所需的基本主題概述,包括基本的線性代數和Python編程。第二部分概述了神經科學,針對計算機科學導向的讀者。該部分涵蓋了神經解剖學和生理學、細胞神經科學、神經系統疾病和計算神經科學。該書的第三部分深入介紹了如何將機器學習和數據挖掘應用於神經科學,並介紹了人工神經網絡(ANN)、聚類和異常檢測等內容。該書包含了可下載的完整工作代碼示例。它還包含實驗室任務和測驗,適合作為教材使用。主要的受眾是需要深入研究機器學習的神經科學研究人員、被指派進行神經科學相關機器學習項目的程序員以及學習計算神經科學方法的學生。

作者簡介

Dr. Chuck Easttom is the author of 32 books. He is an inventor with 22 computer science patents. He holds a Doctor of Science in cybersecurity, a Ph.D. in Nanotechnology, and a Ph.D. in computer science as well as three master's degrees (one in applied computer science, one in education, and one in systems engineering). He is a senior member of both the IEEE and the ACM. He is also a Distinguished Speaker of the ACM and a Distinguished Visitor of the IEEE. He has been active in the IEEE Brain Computer Interface Standards and is a member of the IEEE Engineering in Medicine and Biology Society.

作者簡介(中文翻譯)

Dr. Chuck Easttom是32本書的作者。他是一位擁有22項計算機科學專利的發明家。他擁有一個博士學位,專攻於網絡安全,還有一個納米技術博士學位和一個計算機科學博士學位,以及三個碩士學位(應用計算機科學、教育和系統工程)。他是IEEE和ACM的高級會員。他還是ACM的傑出演講者和IEEE的傑出訪客。他在IEEE腦機接口標準方面非常活躍,並且是IEEE醫學與生物工程學會的成員。