Generative Adversarial Networks and Deep Learning: Theory and Applications (生成對抗網絡與深度學習:理論與應用)

Raut, Roshani, D. Pathak, Pranav, R. Sakhare, Sachin

  • 出版商: CRC
  • 出版日期: 2024-12-19
  • 售價: $2,690
  • 貴賓價: 9.5$2,556
  • 語言: 英文
  • 頁數: 208
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032068116
  • ISBN-13: 9781032068114
  • 相關分類: DeepLearning
  • 尚未上市,無法訂購

相關主題

商品描述

This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. This book's major goal is to concentrate on cutting-edge research in deep learning and generative adversarial networks, which includes creating new tools and methods for processing text, images, and audio.

A Generative Adversarial Network (GAN) is a class of machine learning framework and is the next emerging network in deep learning applications. Generative Adversarial Networks(GANs) have the feasibility to build improved models, as they can generate the sample data as per application requirements. There are various applications of GAN in science and technology, including computer vision, security, multimedia and advertisements, image generation, image translation, text-to-images synthesis, video synthesis, generating high-resolution images, drug discovery, etc.

Features:

  • Presents a comprehensive guide on how to use GAN for images and videos.
  • Includes case studies of Underwater Image Enhancement Using Generative Adversarial Network, Intrusion detection using GAN
  • Highlights the inclusion of gaming effects using deep learning methods
  • Examines the significant technological advancements in GAN and its real-world application.
  • Discusses as GAN challenges and optimal solutions

The book addresses scientific aspects for a wider audience such as junior and senior engineering, undergraduate and postgraduate students, researchers, and anyone interested in the trends development and opportunities in GAN and Deep Learning.

The material in the book can serve as a reference in libraries, accreditation agencies, government agencies, and especially the academic institution of higher education intending to launch or reform their engineering curriculum

商品描述(中文翻譯)

本書探討如何在各種應用中使用生成對抗網絡,並強調其相較於傳統生成模型的重大進展。本書的主要目標是專注於深度學習和生成對抗網絡的前沿研究,包括為文本、圖像和音頻處理創建新工具和方法。

生成對抗網絡(GAN)是一種機器學習框架,並且是深度學習應用中下一個新興的網絡。生成對抗網絡(GANs)具有構建改進模型的可行性,因為它們可以根據應用需求生成樣本數據。GAN在科學和技術中的應用廣泛,包括計算機視覺、安全性、多媒體和廣告、圖像生成、圖像翻譯、文本到圖像合成、視頻合成、高解析度圖像生成、藥物發現等。

特點:
- 提供如何使用GAN處理圖像和視頻的全面指南。
- 包含使用生成對抗網絡進行水下圖像增強和使用GAN進行入侵檢測的案例研究。
- 突出使用深度學習方法的遊戲效果的納入。
- 檢視GAN的重大技術進展及其在現實世界中的應用。
- 討論GAN的挑戰及最佳解決方案。

本書針對更廣泛的受眾,如初級和高級工程學生、本科生和研究生、研究人員,以及任何對GAN和深度學習的趨勢發展和機會感興趣的人士。

本書的材料可作為圖書館、認證機構、政府機構,特別是打算啟動或改革其工程課程的高等教育學術機構的參考資料。