Fuzzy Modeling and Fuzzy Control (Hardcover)
Huaguang Zhang, Derong Liu
- 出版商: Birkhauser Boston
- 出版日期: 2006-09-26
- 售價: $1,350
- 貴賓價: 9.8 折 $1,323
- 語言: 英文
- 頁數: 416
- 裝訂: Hardcover
- ISBN: 0817644911
- ISBN-13: 9780817644918
-
相關分類:
控制系統 Control-systems
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$950$931 -
$1,176Microelectronic Circuit Design, 2/e (IE)(美國版ISBN:0072505036)
-
$1,140Internet & World Wide Web How to Program, 3/e
-
$1,029Logic and Computer Design Fundamentals, 3/e
-
$1,140Designing Interactive Systems: People, Activities, Contexts, Technologies (Hardcover)
-
$880$695 -
$520$442 -
$550$468 -
$980$774 -
$650$507 -
$480$408 -
$1,200$948 -
$990CCNP ONT Official Exam Certification Guide (Hardcover)
-
$600$480 -
$720$612 -
$399CCNP ISCW Official Exam Certification Guide
-
$400$316 -
$1,260$1,235 -
$580$458 -
$780$663 -
$490$417 -
$980$980 -
$600$540 -
$1,550Optimal Control, 3/e (Hardcover)
-
$1,470Linear Control System Analysis and Design with MATLAB, 6/e (Hardcover)
相關主題
商品描述
Description
Fuzzy logic methodology has been proven effective in dealing with complex nonlinear systems containing uncertainties that are otherwise difficult to model. Technology based on this methodology has been applied to many real-world problems, especially in the area of consumer products. This book presents the first unified and thorough treatment of fuzzy modeling and fuzzy control, providing necessary tools for the control of complex nonlinear systems.
Based on three types of fuzzy models—the Mamdani fuzzy model, the Takagi–Sugeno fuzzy model, and the fuzzy hyperbolic model—the book addresses a number of important issues in fuzzy control systems, including fuzzy modeling, fuzzy inference, stability analysis, systematic design frameworks, robustness, and optimality. The authors develop several advanced control schemes, such as the fuzzy model-based generalized predictive control scheme, the fuzzy adaptive control scheme based on fuzzy basis function vectors, the fuzzy control scheme based on fuzzy performance evaluators, and the fuzzy sliding-mode control scheme. Careful consideration is given to questions concerning model complexity, model precision, and computing time.
In addition to being an excellent reference for electrical, computer, chemical, industrial, civil, manufacturing, mechanical and aeronautical engineers, the book may also be appropriate for classroom use in a graduate course in electrical engineering, computer engineering, and computer science. Applied mathematicians, control engineers, computer scientists, and physicists will benefit from the presentation as well.
Table of Contents
Preface xi
1 Fuzzy Set Theory and Rough Set Theory
1 (32)
1.1 Classical Set Theory
2 (2)
1.2 Fuzzy Set Theory
4 (22)
1.3 Rough Set Theory
26 (5)
1.4 Summary
31 (1)
Bibliography
31 (2)
2 Identification of the TakagiSugeno Fuzzy Model
33 (44)
2.1 Introduction
33 (1)
2.2 Description of the TS Fuzzy Model
34 (3)
2.3 An Off-Line Fuzzy Identification Algorithm
37 (25)
2.4 An Identification Approach with Less Computational Burden
62 (6)
2.5 Identification Approach for the Generalized TS Fuzzy Model
68 (7)
2.6 Summary
75 (1)
Bibliography
75 (2)
3 Fuzzy Model Identification Based on Rough Set Data Analysis
77 (32)
3.1 Introduction
77 (1)
3.2 Preliminaries
78 (7)
3.3 Input Structure Identification
85 (9)
3.4 Fuzzy Relation Model Identification
94 (7)
3.5 ANN Modeling Based on Rough Sets
101 (5)
3.6 Summary
106 (1)
Bibliography
106 (3)
4 Identification of the Fuzzy Hyperbolic Model
109 (28)
4.1 Introduction
109 (1)
4.2 Fuzzy Hyperbolic Model
110 (8)
4.3 Generalized Fuzzy Hyperbolic Model
118 (16)
4.4 Summary
134 (1)
Bibliography
134 (3)
5 Basic Methods for Fuzzy Inference and Control
137 (36)
5.1 Introduction
137 (1)
5.2 Design of a Simple Fuzzy Control System
137 (8)
5.3 Parameters and Responses of the Simple Fuzzy Control System
145 (3)
5.4 Fuzzy Self-Tuning Control
148 (6)
5.5 Simulation Comparison Under Disturbances
154 (5)
5.6 Robustness of a Fuzzy Self-Tuning Control System
159 (1)
5.7 Automatic Generation of a Fuzzy State-Action Table
159 (12)
5.8 Summary
171 (1)
Bibliography
171 (2)
6 Fuzzy Inference and Control Methods Involving Two Kinds of Uncertainties
173 (22)
6.1 Introduction
173 (1)
6.2 Historical Overview and Problem Description
174 (1)
6.3 Definitions of Several Basic Concepts
175 (5)
6.4 The Function CF and the Overall Point-Valued THFDP Algorithm
180 (2)
6.5 Fuzzy Decision-Making of Composite Rules
182 (1)
6.6 Numerical Examples
183 (2)
6.7 Fuzzy Control Methods Involving Two Kinds of Uncertainties
185 (7)
6.8 Summary
192 (1)
Bibliography
192 (3)
7 Fuzzy Control Schemes via a Fuzzy Performance Evaluator
195 (46)
7.1 Introduction
195 (1)
7.2 Fundamentals of a Fuzzy Control Scheme via FPE
196 (1)
7.3 Fuzzy Adaptive Control Scheme via FPE
197 (13)
7.4 Fuzzy State Feedback Control Scheme via FPE
210 (14)
7.5 Fuzzy Control of Nonlinear Systems with Time-Delays via FPE
224 (15)
7.6 Summary
239 (1)
Bibliography
239 (2)
8 Multivariable Predictive Control Based on the TS Fuzzy Model
241 (32)
8.1 Introduction
241 (1)
8.2 Preliminaries
242 (2)
8.3 Equivalent Transformation of the Fuzzy Model
244 (5)
8.4 Predictive Control Law for Multivariable Processes
249 (2)
8.5 Stability of a Fuzzy Generalized Predictive Control System
251 (2)
8.6 Other Performance Analysis
253 (2)
8.7 Fuzzy Generalized Predictive Control of a Boiler-Turbine Unit
255 (4)
8.8 Comparison of Fuzzy Predictive Control and Conventional Control
259 (2)
8.9 Robustness of Fuzzy Generalized Predictive Control System
261 (2)
8.10 Fuzzy Modeling of Operators' Control Rules with Application
263 (6)
8.11 Summary
269 (1)
Bibliography
270 (3)
9 Adaptive Control Methods Based on Fuzzy Basis Function Vectors
273 (26)
9.1 Introduction
273 (1)
9.2 Notation and Preliminaries
274 (4)
9.3 Design of an Adaptive Controller Based on Fuzzy Basis Function Vectors for Multivariable Square Nonlinear Systems
278 (11)
9.4 Design of an Adaptive Controller Based on Fuzzy Basis Function Vectors for Multivariable Nonsquare Nonlinear Systems
289 (3)
9.5 Numerical Example
292 (4)
9.6 Summary
296 (1)
Bibliography
296 (3)
10 Controller Design Based on the Fuzzy Hyperbolic Model 299 (24)
10.1 Introduction
299 (1)
10.2 Stable Controller Design by Pole-Placement Method
300 (5)
10.3 Nonlinear H2 Optimal Controller Design
305 (4)
10.4 H. Controller Design
309 (3)
10.5 Control of Nonlinear Time-Delay Systems with Uncertainties
312 (7)
10.6 Summary
319 (1)
Bibliography
319 (4)
11 Fuzzy H. Filter Design for Nonlinear Discrete-Time Systems with Multiple Time-Delays 323 (34)
11.1 Introduction
323 (1)
11.2 Modeling of Nonlinear Systems Using the TS Fuzzy System
324 (4)
11.3 Fuzzy H. Filtering Analysis Based on the TS Fuzzy Model
328 (12)
11.4 Fuzzy H. Filter Design
340 (6)
11.5 Simulation Example
346 (7)
11.6 Summary
353 (1)
Bibliography
353 (4)
12 Chaotification of the Fuzzy Hyperbolic Model 357 (32)
12.1 Introduction
357 (1)
12.2 Chaotification by the Impulsive Control Method
358 (9)
12.3 Chaotification by the Inverse Optimal Control Method
367 (10)
12.4 Chaotification of the Original System
377 (8)
12.5 Summary
385 (1)
Bibliography
385 (4)
13 Feedforward Fuzzy Control Approach Using the Fourier Integral 389 (24)
13.1 Introduction
389 (1)
13.2 Problem Formation
390 (2)
13.3 System Description and Assumptions
392 (1)
13.4 FSMC Feedback Control Law
393 (7)
13.5 Adaptive Feedforward Controller Design in the Fourier Space
400 (4)
13.6 Convergence Conditions of the Global Closed-Loop System
404 (2)
13.7 Simulation and Comparisons
406 (5)
13.8 Summary
411 (1)
Bibliography
412 (1)
Index 413
商品描述(中文翻譯)
描述
模糊邏輯方法已被證明在處理包含難以建模的不確定性的複雜非線性系統中非常有效。基於這種方法的技術已被應用於許多現實世界的問題,尤其是在消費品領域。本書提供了模糊建模和模糊控制的首個統一且全面的介紹,為控制複雜非線性系統提供了必要的工具。
本書基於三種類型的模糊模型——Mamdani模糊模型、Takagi-Sugeno模糊模型和模糊双曲模型——討論了模糊控制系統中的一些重要問題,包括模糊建模、模糊推理、穩定性分析、系統設計框架、魯棒性和最優性。作者們開發了幾種先進的控制方案,例如基於模糊模型的廣義預測控制方案、基於模糊基底函數向量的模糊自適應控制方案、基於模糊性能評估器的模糊控制方案和基於模糊滑模控制方案。對於模型複雜性、模型精度和計算時間等問題給予了仔細考慮。
除了對於電氣、計算機、化學、工業、土木、製造、機械和航空工程師來說是一本優秀的參考書外,本書也適合作為電氣工程、計算機工程和計算機科學研究生課程的教材。應用數學家、控制工程師、計算機科學家和物理學家也將從本書中受益。
目錄
前言
1. 模糊集合理論和粗糙集合理論
2. 基於Takagi-Sugeno模糊模型的識別
3. 基於粗糙集數據分析的模糊模型識別
4. 模糊双曲模型的識別