More Predictive Analytics: Microsoft Excel (Paperback)
Conrad Carlberg
- 出版商: QUE
- 出版日期: 2015-08-30
- 售價: $1,550
- 貴賓價: 9.5 折 $1,473
- 語言: 英文
- 頁數: 272
- 裝訂: Paperback
- ISBN: 0789756145
- ISBN-13: 9780789756145
-
相關分類:
Excel、Machine Learning
無法訂購
相關主題
商品描述
Accurate, practical Excel predictive analysis: powerful smoothing techniques for serious data crunchers!
In More Predictive Analytics, Microsoft Excel® MVP Conrad Carlberg shows how to use intuitive smoothing techniques to make remarkably accurate predictions. You won’t have to write a line of code--all you need is Excel and this all-new, crystal-clear tutorial.
Carlberg goes beyond his highly-praised Predictive Analytics, introducing proven methods for creating more specific, actionable forecasts. You’ll learn how to predict what customers will spend on a given product next year… project how many patients your hospital will admit next quarter… tease out the effects of seasonality (or patterns that recur over a day, year, or any other period)… distinguish real trends from mere “noise.”
Drawing on more than 20 years of experience, Carlberg helps you master powerful techniques such as autocorrelation, differencing, Holt-Winters, backcasting, polynomial regression, exponential smoothing, and multiplicative modeling.
Step by step, you’ll learn how to make the most of built-in Excel tools to gain far deeper insights from your data. To help you get better results faster, Carlberg provides downloadable Excel workbooks you can easily adapt for your own projects.
If you’re ready to make better forecasts for better decision-making, you’re ready for More Predictive Analytics.
- Discover when and how to use smoothing instead of regression
- Test your data for trends and seasonality
- Compare sets of observations with the autocorrelation function
- Analyze trended time series with Excel’s Solver and Analysis ToolPak
- Use Holt's linear exponential smoothing to forecast the next level and trend, and extend forecasts further into the future
- Initialize your forecasts with a solid baseline
- Improve your initial forecasts with backcasting and optimization
- Fully reflect simple or complex seasonal patterns in your forecasts
- Account for sudden, unexpected changes in trends, from fads to new viral infections
- Use range names to control complex forecasting models more easily
- Compare additive and multiplicative models, and use the right model for each task
商品描述(中文翻譯)
準確、實用的 Excel 預測分析:為認真數據分析者提供強大的平滑技術!
在《More Predictive Analytics》中,微軟 Excel® MVP Conrad Carlberg 展示了如何使用直觀的平滑技術來做出相當準確的預測。您不需要寫一行程式碼——您所需的只是 Excel 和這本全新、清晰的教程。
Carlberg 超越了他備受讚譽的《Predictive Analytics》,介紹了創建更具體、可行預測的有效方法。您將學會如何預測客戶明年在某一產品上的消費……預測您的醫院下季度將接收多少病人……分析季節性影響(或在一天、一年或任何其他期間重複出現的模式)……區分真正的趨勢與僅僅是“噪音”。
憑藉超過 20 年的經驗,Carlberg 幫助您掌握強大的技術,如自相關、差分、Holt-Winters、回溯預測、多項式回歸、指數平滑和乘法建模。
逐步學習,您將學會如何充分利用內建的 Excel 工具,從數據中獲得更深入的見解。為了幫助您更快獲得更好的結果,Carlberg 提供可下載的 Excel 工作簿,您可以輕鬆調整以適應自己的項目。
如果您準備好做出更好的預測以促進更好的決策,那麼您已經準備好《More Predictive Analytics》。
- 發現何時以及如何使用平滑技術而非回歸
- 測試您的數據以尋找趨勢和季節性
- 使用自相關函數比較觀察集
- 使用 Excel 的求解器和分析工具包分析趨勢時間序列
- 使用 Holt 的線性指數平滑預測下一個水平和趨勢,並將預測延伸到更遠的未來
- 用穩固的基線初始化您的預測
- 通過回溯預測和優化改善您的初始預測
- 在預測中充分反映簡單或複雜的季節性模式
- 考慮到趨勢中的突發、意外變化,從潮流到新的病毒感染
- 使用範圍名稱更輕鬆地控制複雜的預測模型
- 比較加法和乘法模型,並為每個任務使用正確的模型