Introduction to Large Language Models for Business Leaders: Responsible AI Strategy Beyond Fear and Hype (商業領袖的大型語言模型入門:超越恐懼與炒作的負責任AI策略)

Almeida, I.

  • 出版商: Now Next Later AI
  • 出版日期: 2023-09-01
  • 售價: $1,220
  • 貴賓價: 9.5$1,159
  • 語言: 英文
  • 頁數: 250
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0645510580
  • ISBN-13: 9780645510584
  • 相關分類: LangChain人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Responsible AI Strategy Beyond Fear and Hype - 2024 Edition


Finalist for the 2023 HARVEY CHUTE Book Awards recognizing emerging talent and outstanding works in the genre of Business and Enterprise Non-Fiction.


In this comprehensive guide, business leaders will gain a nuanced understanding of large language models (LLMs) and generative AI. The book covers the rapid progress of LLMs, explains technical concepts in non-technical terms, provides business use cases, offers implementation strategies, explores impacts on the workforce, and discusses ethical considerations. Key topics include:


  1. The Evolution of LLMs: From early statistical models to transformer architectures and foundation models.
  2. How LLMS Understand Language: Demystifying key components like self-attention, embeddings, and deep linguistic modeling.
  3. The Art of Inference: Exploring inference parameters for controlling and optimizing LLM outputs.
  4. Appropriate Use Cases: A nuanced look at LLM strengths and limitations across applications like creative writing, conversational agents, search, and coding assistance.
  5. Productivity Gains: Synthesizing the latest research on generative AI's impact on worker efficiency and satisfaction.
  6. The Perils of Automation: Examining risks like automation blindness, deskilling, disrupted teamwork and more if LLMs are deployed without deliberate precautions.
  7. The LLM Value Chain: Analyzing key components, players, trends and strategic considerations.
  8. Computational Power: A deep dive into the staggering compute requirements behind state-of-the-art generative AI.
  9. Open Source vs Big Tech: Exploring the high-stakes battle between open and proprietary approaches to AI development.
  10. The Generative AI Project Lifecycle: A blueprint spanning use case definition, model selection, adaptation, integration and deployment.
  11. Ethical Data Sourcing: Why the training data supply chain proves as crucial as model architecture for responsible development.
  12. Evaluating LLMs: Surveying common benchmarks, their limitations, and holistic alternatives.
  13. Efficient Fine-Tuning: Examining techniques like LoRA and PEFT that adapt LLMs for applications with minimal compute.
  14. Human Feedback: How reinforcement learning incorporating human ratings and demonstrations steers models towards helpfulness.
  15. Ensemble Models and Mixture-of-Experts: Parallels between collaborative intelligence in human teams and AI systems.
  16. Areas of Research and Innovation: Retrieval augmentation, program-aided language models, action-based reasoning and more.
  17. Ethical Deployment: Pragmatic steps for testing, monitoring, seeking feedback, auditing incentives and mitigating risks responsibly.


The book offers an impartial narrative aimed at informing readers for thoughtful adoption, maximizing real-world benefits while proactively addressing risks. With this guide, leaders gain integrated perspectives essential to setting sound strategies amidst generative AI's rapid evolution.


More Than a Book


By purchasing this book, you will also be granted free access to the AI Academy platform. There you can view free course modules, test your knowledge through quizzes, attend webinars, and engage in discussion with other readers. No credit card required.



商品描述(中文翻譯)

《負責任的人工智慧策略:超越恐懼與炒作 - 2024 版本》

《2023年HARVEY CHUTE圖書獎》商業與企業非虛構類新興人才和傑出作品的入圍者。

在這本全面指南中,商業領袖將獲得對大型語言模型(LLMs)和生成式人工智慧的細緻理解。本書涵蓋了LLMs的快速進展,以非技術性的方式解釋技術概念,提供商業應用案例,提供實施策略,探討對勞動力的影響,並討論倫理考慮。主要主題包括:

1. LLM的演進:從早期統計模型到轉換器架構和基礎模型。
2. LLM如何理解語言:揭開自我注意力、嵌入和深度語言建模等關鍵組件的神秘面紗。
3. 推論的藝術:探索控制和優化LLM輸出的推論參數。
4. 適當的應用案例:細緻地研究LLM在創意寫作、對話代理、搜索和編碼輔助等應用中的優勢和限制。
5. 生產力提升:綜合最新的生成式人工智慧對工人效率和滿意度的影響研究。
6. 自動化的危險:如果LLM在沒有謹慎預防措施的情況下部署,將檢視自動化盲點、技能下降、團隊合作中斷等風險。
7. LLM價值鏈:分析關鍵組件、參與者、趨勢和戰略考慮。
8. 計算能力:深入探討最先進生成式人工智慧背後驚人的計算需求。
9. 開源 vs 大型科技公司:探索AI開發中開放和專有方法之間的高風險競爭。
10. 生成式人工智慧專案生命周期:從用例定義、模型選擇、適應、整合到部署的藍圖。
11. 倫理數據採集:為負責任的開發,解釋訓練數據供應鏈與模型架構同樣重要的原因。
12. 評估LLMs:調查常見基準、其限制和整體替代方案。
13. 高效微調:檢視LoRA和PEFT等適應LLM至最小計算需求應用的技術。
14. 人類反饋:如何通過結合人類評分和示範的強化學習引導模型朝向有幫助的方向發展。
15. 集成模型和專家混合:人類團隊和AI系統之間協作智能的相似之處。
16. 研究和創新領域:檢索增強、程式輔助語言模型、基於行動的推理等等。
17. 負責任部署:測試、監控、尋求反饋、審計激勵措施和負面風險緩解的實用步驟。

本書提供客觀的敘述,旨在為讀者提供思考採用的資訊,最大限度地實現現實世界的利益,同時主動應對風險。通過這本指南,領導者獲得了在生成式人工智慧快速發展中制定健全策略所必不可少的綜合觀點。

《不僅僅是一本書》

購買本書,您還將獲得AI學院平台的免費訪問權限。在那裡,您可以查看免費課程模塊,通過測驗測試您的知識,參加網絡研討會,並與其他讀者進行討論。無需信用卡。