Geometric Folding Algorithms: Linkages, Origami, Polyhedra
暫譯: 幾何摺疊演算法:連桿、摺紙、多面體

Erik D. Demaine, Joseph O'Rourke

  • 出版商: Cambridge
  • 出版日期: 2007-07-16
  • 售價: $7,210
  • 貴賓價: 9.5$6,850
  • 語言: 英文
  • 頁數: 488
  • 裝訂: Hardcover
  • ISBN: 0521857570
  • ISBN-13: 9780521857574
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Description

Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s, but have only recently been studied in the mathematical literature. Over the past decade, there has been a surge of interest in these problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this intriguing treatment of the geometry of folding and unfolding presents hundreds of results and over 60 unsolved ‘open problems’ to spur further research. The authors cover one-dimensional objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Aimed primarily at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from students to researchers.

• Fascinating, tangible, cutting-edge research with applications throughout science and engineering

• Full color throughout

• Erik Demaine won a MacArthur fellowship in 2003 for his work on the mathematics of origami

Table of Contents

Introduction;

Part I. Linkages:

1. Problem classification and examples;

2. Upper and lower bounds;

3. Planar linkage mechanisms;

4. Rigid frameworks;

5. Reconfiguration of chains;

6. Locked chains;

7. Interlocked chains;

8. Joint-constrained motion;

9. Protein folding;

Part II. Paper:

10. Introduction;

11. One-dimensional paper;

12. Two-dimensional paper and continuous foldability;

13. Single-vertex foldability;

14. Multi-vertex flat foldability;

15. 2D Map folding;

16. Silhouettes and gift wrapping;

17. Tree method;

18. One complete straight cut;

19. Flattening polyhedra;

20. Geometric constructibility;

21. Curved and curved-fold origami;

Part III. Polyhedra:

22. Introduction and overview;

23. Edge unfolding of polyhedra;

24. Reconstruction of polyhedra;

25. Shortest paths and geodesics;

26. Folding polygons to polyhedra;

27. Higher dimensions.

商品描述(中文翻譯)

**描述**

摺疊和展開問題自1500年代初期的阿爾布雷希特·杜勒(Albrecht Dürer)以來就已經隱含存在,但直到最近才在數學文獻中受到研究。在過去十年中,這些問題引起了大量的興趣,應用範圍從機器人技術到蛋白質摺疊。這本引人入勝的書籍強調了算法或計算方面,呈現了摺疊和展開幾何的數百個結果以及超過60個未解決的“開放問題”,以激發進一步的研究。作者涵蓋了一維物體(連桿)、二維物體(紙張)和三維物體(多面體)。本書主要針對數學或計算機科學的高年級本科生和研究生,豐富的插圖將吸引從學生到研究人員的廣泛讀者群。

- 迷人、具體、前沿的研究,應用於科學和工程的各個領域
- 全書全彩印刷
- Erik Demaine因其在摺紙數學方面的工作於2003年獲得麥克阿瑟獎學金

**目錄**

引言;
第一部分 連桿:
1. 問題分類和範例;
2. 上界和下界;
3. 平面連桿機構;
4. 剛性框架;
5. 鏈的重構;
6. 鎖定鏈;
7. 互鎖鏈;
8. 關節約束運動;
9. 蛋白質摺疊;
第二部分 紙張:
10. 引言;
11. 一維紙張;
12. 二維紙張和連續摺疊性;
13. 單頂點摺疊性;
14. 多頂點平面摺疊性;
15. 二維地圖摺疊;
16. 輪廓和包裝;
17. 樹狀方法;
18. 一次完整的直切;
19. 扁平化多面體;
20. 幾何可構造性;
21. 曲線和曲折摺紙;
第三部分 多面體:
22. 引言和概述;
23. 多面體的邊展開;
24. 多面體的重建;
25. 最短路徑和測地線;
26. 將多邊形摺疊成多面體;
27. 更高維度。