Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design (Hardcover)
暫譯: 有限群的傅立葉分析及其在信號處理與系統設計中的應用 (精裝版)
Radomir S. Stankovic, Claudio Moraga, Jaakko Astola
- 出版商: Wiley
- 出版日期: 2005-06-01
- 售價: $4,970
- 貴賓價: 9.5 折 $4,722
- 語言: 英文
- 頁數: 264
- 裝訂: Hardcover
- ISBN: 0471694630
- ISBN-13: 9780471694632
已絕版
買這商品的人也買了...
-
$980$774 -
$690$587 -
$780$702 -
$490$382 -
$490$441 -
$350$277 -
$650$507 -
$750$593 -
$580$493 -
$580$458 -
$580$458 -
$450$356 -
$550$495 -
$880$695 -
$560$437 -
$450$383 -
$780$663 -
$580$458 -
$490$382 -
$780$616 -
$720$569 -
$650$514 -
$490$382 -
$800$632 -
$260$205
相關主題
商品描述
Description:
Discover applications of Fourier analysis on finite non-Abelian groups
The majority of publications in spectral techniques consider Fourier transform on Abelian groups. However, non-Abelian groups provide notable advantages in efficient implementations of spectral methods.
Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design examines aspects of Fourier analysis on finite non-Abelian groups and discusses different methods used to determine compact representations for discrete functions providing for their efficient realizations and related applications. Switching functions are included as an example of discrete functions in engineering practice. Additionally, consideration is given to the polynomial expressions and decision diagrams defined in terms of Fourier transform on finite non-Abelian groups.
A solid foundation of this complex topic is provided by beginning with a review of signals and their mathematical models and Fourier analysis. Next, the book examines recent achievements and discoveries in:
- Matrix interpretation of the fast Fourier transform
- Optimization of decision diagrams
- Functional expressions on quaternion groups
- Gibbs derivatives on finite groups
- Linear systems on finite non-Abelian groups
- Hilbert transform on finite groups
Among the highlights is an in-depth coverage of applications of abstract harmonic analysis on finite non-Abelian groups in compact representations of discrete functions and related tasks in signal processing and system design, including logic design. All chapters are self-contained, each with a list of references to facilitate the development of specialized courses or self-study.
With nearly 100 illustrative figures and fifty tables, this is an excellent textbook for graduate-level students and researchers in signal processing, logic design, and system theory—as well as the more general topics of computer science and applied mathematics.
商品描述(中文翻譯)
**描述:**
探索有限非阿貝爾群上的傅立葉分析應用
大多數關於光譜技術的出版物考慮在阿貝爾群上的傅立葉變換。然而,非阿貝爾群在光譜方法的高效實現上提供了顯著的優勢。
《有限群上的傅立葉分析及其在信號處理和系統設計中的應用》探討了有限非阿貝爾群上傅立葉分析的各個方面,並討論了用於確定離散函數的緊湊表示的不同方法,以便其高效實現及相關應用。切換函數作為工程實踐中離散函數的一個例子被納入考量。此外,還考慮了以有限非阿貝爾群上的傅立葉變換為基礎的多項式表達式和決策圖。
本書通過回顧信號及其數學模型和傅立葉分析,為這一複雜主題提供了堅實的基礎。接下來,本書考察了以下領域的最新成就和發現:
- 快速傅立葉變換的矩陣詮釋
- 決策圖的優化
- 四元數群上的函數表達式
- 有限群上的吉布斯導數
- 有限非阿貝爾群上的線性系統
- 有限群上的希爾伯特變換
其中的亮點是對有限非阿貝爾群上抽象諧波分析應用的深入探討,特別是在離散函數的緊湊表示及信號處理和系統設計(包括邏輯設計)中的相關任務。所有章節都是自成體系的,每章都有參考文獻列表,以便於專業課程的開發或自學。
本書擁有近100幅插圖和50個表格,是信號處理、邏輯設計和系統理論研究生及研究人員的優秀教科書,同時也適用於計算機科學和應用數學等更一般的主題。