Adaptive Blind Signal and Image Processing (Hardcover)
暫譯: 自適應盲信號與影像處理 (精裝版)
Andrzej Cichocki, Shun-ichi Amari
- 出版商: Wiley
- 出版日期: 2002-06-14
- 售價: $1,470
- 語言: 英文
- 頁數: 586
- 裝訂: Hardcover
- ISBN: 0471607916
- ISBN-13: 9780471607915
已絕版
買這商品的人也買了...
-
$1,205TCP/IP Illustrated, Volume 1: The Protocols (Hardcover)
-
$1,200$1,176 -
$2,390$2,271 -
$680$537 -
$399CCNA Self-Study: Interconnecting Cisco Network Devices (Hardcover)
-
$2,660$2,527 -
$580$458 -
$980$774 -
$199Web Design in a Nutshell, 2/e (Paperback)
-
$1,387Independent Component Analysis (Hardcover)
-
$970Introduction to Algorithms, 2/e
-
$1,150$1,127 -
$600$474 -
$1,930$1,834 -
$680$537 -
$1,300$1,274 -
$620$527 -
$780$741 -
$1,100$1,078 -
$650$514 -
$650$514 -
$280$221 -
$690$538 -
$560$476 -
$880$695
商品描述
- Offers a broad coverage of blind signal processing techniques and algorithms both from a theoretical and practical point of view
- Presents more than 50 simple algorithms that can be easily modified to suit the reader's specific real world problems
- Provides a guide to fundamental mathematics of multi-input, multi-output and multi-sensory systems
- Includes illustrative worked examples, computer simulations, tables, detailed graphs and conceptual models within self contained chapters to assist self study
- Accompanying CD-ROM features an electronic, interactive version of the book with fully coloured figures and text. C and MATLAB user-friendly software packages are also provided
By providing a detailed introduction to BSP, as well as presenting new
results and recent developments, this informative and inspiring work will appeal
to researchers, postgraduate students, engineers and scientists working in
biomedical engineering,
communications, electronics, computer science,
optimisations, finance, geophysics and neural networks.
Table of Contents
Preface.
1. Introduction to Blind Signal Processing: Problems and Applications.
Problem formulations - An Overview.
Potential Applications of Blind and Semi-Blind Signal Processing.
2. Solving a System of Algebraic Equations and Related Problems.
Formulation of the Problem for Systems of Linear Equations.
Least-Squares Problems.
Least Absolute Deviation (1-norm) Solution of Systems of Linear Equations.
Total Least-Squares and Data Least-Squares Problems.
Sparse Signal Representation and Minimum Fuel Consumption Problem.
3. Principal/Minor Component Analysis and Related Problems.
Introduction.
Basic Properties of PCA.
Extraction of Principal Components.
Basic Cost Functions and Adaptive Algorithms for PCA.
Robust PCA.
Adaptive Learning Algorithms for MCA.
Unified Parallel Algorithms for PCA/MCA and PSA/MSA.
SVD in Relation to PCA and Matrix Subspaces.
Multistage PCA for BSS.
4. Blind Decorrelation and SOS for Robust Blind Indentification.
Spatial Decorrelation - Whitening Transforms.
SOS Blind Identification Based on EVD.
Improved Blind Identification Algorithms Based on EVD/SVD.
Joint Diagonalization - Robust SOBI.
Cancellation of Correlation.
5. Sequential Blind Signal Extraction.
Introduction and Problem Formulation.
Learning Algorithms Based on Kurtosis as Cost Function.
On Line Algorithms for Blind Signal Extraction of Temporally Correlated Sources.
Batch Algorithms for Blind Extraction of Temporally Correlated Sources.
Statistical Approach to Sequential Extraction of Independent Sources.
Statistical Approach to Temporally Correlated Sources.
On-line Sequential Extraction of Convolved and Mixed Sources.
Computer Simulation: Illustrative Examples.
6. Natural Gradient Approach to Independent Component Analysis.
Basic Natural Gradient Algorithms.
Generalizations of Basic Natural Gradient Algorithm.
NG Algorithms for Blind Extraction.
Generalized Gaussian Distribution Model.
Natural Gradient Algorithms for Non-stationary Sources.
7. Locally Adaptive Algorithsm for ICA and their Implementations.
Modified Jutten-H廨ault Algorithms for Blind Separation of Sources.
Iterative Matrix Inversion Approach to Derivation of Family of Robust ICA Algorithms.
Computer Simulation.
8. Robust Techniques for BSS and ICA with Noisy Data.
Introduction.
Bias Removal Techniques for Prewhitening and ICA Algorithms.
Blind Separation of Signals Buried in Additive Convolutive Reference Noise.
Cumulants Based Adaptive ICA Algorithms.
Robust Extraction of Arbitrary Group of Source Signals.
Recurrent Neural Network Approach for Noise Cancellation.
9. Multichannel Blind Deconvolution - Natural Gradient Approach.
SIMO Convolutive Models and Learning Algorithms for Estimation of Source Signal.
Multichannel Blind Deconvolution with Constraints Imposed on FIR Filters.
General Models for Multiple-Input Multiple-Output Blind Deconvolution.
Relationships between BSS/ICA and MBD.
Natural Gradient Algorithms with Nonholonomic Constraints.
MBD of Non-minimum Phase System Using Filter Decomposition Approach.
Computer Simulations Experiments.
10. Estimating Functions and
商品描述(中文翻譯)
擁有堅實的理論基礎和眾多潛在應用,盲信號處理(Blind Signal Processing, BSP)是信號處理領域中最熱門的新興領域之一。本書統一並擴展了自適應盲信號和影像處理的理論,並提供了盲源分離、獨立成分分析(Independent Component Analysis, ICA)、主成分分析(Principal Component Analysis, PCA)、次成分分析(Minor Component Analysis, MCA)以及多通道盲解卷積(Multichannel Blind Deconvolution, MBD)和均衡的實用高效算法。書中包含超過1400個參考文獻和數學表達式,《自適應盲信號與影像處理》(Adaptive Blind Signal and Image Processing)提供了一系列前所未有的有用技術,用於自適應盲信號/影像的分離、提取、分解和多變量信號及數據的過濾。
- 提供了盲信號處理技術和算法的廣泛覆蓋,從理論和實踐的角度進行探討
- 提出了50多個簡單的算法,讀者可以輕鬆修改以適應具體的現實問題
- 提供了多輸入、多輸出和多感測系統的基本數學指南
- 包含插圖示例、計算機模擬、表格、詳細圖表和概念模型,便於自學
- 附帶的CD-ROM包含本書的電子互動版本,配有全彩圖形和文本,並提供C和MATLAB的用戶友好軟體包
MATLAB是The MathWorks, Inc.的註冊商標。
通過詳細介紹BSP,並呈現新結果和近期發展,這部資訊豐富且啟發性的作品將吸引從事生醫工程、通訊、電子學、計算機科學、優化、金融、地球物理學和神經網絡的研究人員、研究生、工程師和科學家。
**目錄**
前言。
1. 盲信號處理簡介:問題與應用。
- 問題表述 - 概述。
- 盲信號和半盲信號處理的潛在應用。
2. 解決代數方程組及相關問題。
- 線性方程組的問題表述。
- 最小二乘問題。
- 線性方程組的最小絕對偏差(1-norm)解。
- 總最小二乘和數據最小二乘問題。
- 稀疏信號表示和最小燃料消耗問題。
3. 主成分/次成分分析及相關問題。
- 介紹。
- PCA的基本性質。
- 主成分的提取。
- PCA的基本成本函數和自適應算法。
- 魯棒PCA。
- MCA的自適應學習算法。
- PCA/MCA和PSA/MSA的統一並行算法。
- SVD與PCA和矩陣子空間的關係。
- 用於盲源分離的多階段PCA。
4. 盲去相關和SOS用於魯棒盲識別。
- 空間去相關 - 白化變換。
- 基於EVD的SOS盲識別。
- 基於EVD/SVD的改進盲識別算法。
- 聯合對角化 - 魯棒SOBI。
- 相關性消除。
5. 順序盲信號提取。
- 介紹和問題表述。
- 基於峰度的學習算法作為成本函數。
- 用於時間相關源的盲信號提取的在線算法。
- 用於時間相關源的盲提取的批量算法。
- 獨立源的順序提取的統計方法。
- 時間相關源的統計方法。
- 卷積和混合源的在線順序提取。
- 計算機模擬:示例。
6. 自然梯度方法的獨立成分分析。
- 基本自然梯度算法。
- 基本自然梯度算法的推廣。
- 用於盲提取的NG算法。
- 廣義高斯分佈模型。
- 用於非平穩源的自然梯度算法。
7. ICA的局部自適應算法及其實現。
- 用於盲分離源的修改Jutten-Hérault算法。
- 迭代矩陣反演方法推導魯棒ICA算法族。
- 計算機模擬。
8. 噪聲數據的BSS和ICA的魯棒技術。
- 介紹。
- 用於預白化和ICA算法的偏差去除技術。
- 在加性卷積參考噪聲中埋藏信號的盲分離。
- 基於累積量的自適應ICA算法。
- 魯棒提取任意源信號組。
- 用於噪聲消除的遞歸神經網絡方法。
9. 多通道盲解卷積 - 自然梯度方法。
- SIMO卷積模型和源信號估計的學習算法。
- 施加在FIR濾波器上的約束的多通道盲解卷積。
- 多輸入多輸出盲解卷積的一般模型。
- BSS/ICA與MBD之間的關係。
- 具有非完整約束的自然梯度算法。
- 使用濾波器分解方法的非最小相位系統的MBD。
- 計算機模擬實驗。
10. 估計函數和...