Latent Curve Models: A Structural Equation Perspective (Hardcover)
暫譯: 潛在曲線模型:結構方程觀點 (精裝版)

Kenneth A. Bollen, Patrick J. Curran

買這商品的人也買了...

商品描述

An effective technique for data analysis in the social sciences

The recent explosion in longitudinal data in the social sciences highlights the need for this timely publication. Latent Curve Models: A Structural Equation Perspective provides an effective technique to analyze latent curve models (LCMs). This type of data features random intercepts and slopes that permit each case in a sample to have a different trajectory over time. Furthermore, researchers can include variables to predict the parameters governing these trajectories.

The authors synthesize a vast amount of research and findings and, at the same time, provide original results. The book analyzes LCMs from the perspective of structural equation models (SEMs) with latent variables. While the authors discuss simple regression-based procedures that are useful in the early stages of LCMs, most of the presentation uses SEMs as a driving tool. This cutting-edge work includes some of the authors' recent work on the autoregressive latent trajectory model, suggests new models for method factors in multiple indicators, discusses repeated latent variable models, and establishes the identification of a variety of LCMs.

This text has been thoroughly class-tested and makes extensive use of pedagogical tools to aid readers in mastering and applying LCMs quickly and easily to their own data sets. Key features include:

  • Chapter introductions and summaries that provide a quick overview of highlights
  • Empirical examples provided throughout that allow readers to test their newly found knowledge and discover practical applications
  • Conclusions at the end of each chapter that stress the essential points that readers need to understand for advancement to more sophisticated topics
  • Extensive footnoting that points the way to the primary literature for more information on particular topics

With its emphasis on modeling and the use of numerous examples, this is an excellent book for graduate courses in latent trajectory models as well as a supplemental text for courses in structural modeling. This book is an excellent aid and reference for researchers in quantitative social and behavioral sciences who need to analyze longitudinal data.

商品描述(中文翻譯)

社會科學中數據分析的有效技術

社會科學中縱向數據的近期激增突顯了這本及時出版物的必要性。《潛在曲線模型:結構方程的視角》提供了一種有效的技術來分析潛在曲線模型(LCMs)。這類數據特徵隨機截距和斜率,允許樣本中的每個案例隨時間擁有不同的軌跡。此外,研究人員可以包含變數來預測這些軌跡所支配的參數。

作者綜合了大量的研究和發現,同時提供了原創結果。該書從結構方程模型(SEMs)與潛在變數的角度分析LCMs。雖然作者討論了在LCMs早期階段有用的簡單回歸程序,但大部分內容使用SEMs作為主要工具。這部前沿作品包括作者最近在自回歸潛在軌跡模型上的一些研究,提出了多指標方法因素的新模型,討論了重複潛在變數模型,並確立了各種LCMs的識別。

本書經過充分的課堂測試,並廣泛使用教學工具,幫助讀者快速輕鬆地掌握和應用LCMs於自己的數據集。主要特點包括:


  • 章節介紹和摘要,提供重點的快速概覽

  • 貫穿全書的實證例子,讓讀者測試新獲得的知識並發現實際應用

  • 每章結尾的結論,強調讀者在進入更高級主題時需要理解的要點

  • 廣泛的註腳,指引讀者查閱主要文獻以獲取特定主題的更多信息

本書強調建模並使用大量例子,是研究生課程中潛在軌跡模型的優秀教材,也是結構建模課程的補充文本。這本書對於需要分析縱向數據的定量社會科學和行為科學研究人員來說,是一個極好的幫助和參考資料。