Kalman Filtering and Neural Networks
暫譯: 卡爾曼濾波與神經網絡
Simon Haykin
- 出版商: Wiley
- 出版日期: 2001-10-08
- 售價: $6,090
- 貴賓價: 9.5 折 $5,786
- 語言: 英文
- 頁數: 284
- 裝訂: Hardcover
- ISBN: 0471369985
- ISBN-13: 9780471369981
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,205Advanced Programming in the UNIX Environment (Hardcover)
-
$1,200$1,176 -
$860$817 -
$7,340$6,973 -
$823C++ Primer, 3/e
-
$1,078UNIX Network Programming, Volume 1, 2/e (精裝)
-
$1,200$1,176 -
$1,029Fundamentals of Data Structures in C
-
$1,009Cryptography & Network Security: Principles & Practice, 2/e (精裝)
-
$931Data Mining: Practical Machine Learning Tools and Techniques with Java Implement
-
$2,370$2,252 -
$1,068Software Engineering, 6/e
-
$2,840$2,698 -
$969The 8051 Microcontroller and Embedded Systems
-
$700Network Architecture & Design: A Field Guide for IT Consultants
-
$1,029Operating System Concepts, 6/e
-
$1,009Concepts of Programming Languages, 5/e (精裝)
-
$1,000$980 -
$970Introduction to Algorithms, 2/e
-
$1,260Beginning Perl for Bioinformatics (Paperback)
-
$1,045Distributed Systems: Principles and Paradigms
-
$1,150$1,127 -
$1,730$1,644 -
$1,650$1,568 -
$1,733C++ Gotchas: Avoiding Common Problems in Coding and Design (Paperback)
相關主題
商品描述
State-of-the-art coverage of Kalman filter methods for the design of neural networks
This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear.
The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover:
- An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF)
- Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes
- The dual estimation problem
- Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm
- The unscented Kalman filter
Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems.
Table of Contents
Preface.
Contributors.
Kalman Filters (S. Haykin).
Parameter-Based Kalman Filter Training: Theory and Implementaion (G. Puskorius and L. Feldkamp).
Learning Shape and Motion from Image Sequences (G. Patel, et al.).
Chaotic Dynamics (G. Patel and S. Haykin).
Dual Extended Kalman Filter Methods (E. Wan and A. Nelson).
Learning Nonlinear Dynamical System Using the Expectation-Maximization Algorithm (S. Roweis and Z. Ghahramani).
The Unscencted Kalman Filter (E. Wan and R. van der Merwe).
Index.
商品描述(中文翻譯)
最先進的卡爾曼濾波方法在神經網絡設計中的應用
本書由七位專家貢獻的章節組成,全面探討卡爾曼濾波在神經網絡訓練和使用中的應用。雖然傳統的研究方法幾乎總是線性的,但本書認識到並處理了現實問題通常是非線性的事實。
第一章提供了卡爾曼濾波器的入門介紹,重點介紹基本的卡爾曼濾波理論、Rauch-Tung-Striebel平滑器和擴展卡爾曼濾波器。其他章節涵蓋:
- 基於解耦擴展卡爾曼濾波器(DEKF)的前饋和遞迴多層感知器的訓練算法
- DEKF學習算法在圖像序列研究和混沌過程動態重建中的應用
- 雙重估計問題
- 隨機非線性動力學:期望最大化(EM)算法和擴展卡爾曼平滑(EKS)算法
- 無味卡爾曼濾波器
每章(引言除外)都包括了這裡描述的學習算法的示範應用,其中一些涉及使用模擬和實際數據。《卡爾曼濾波與神經網絡》是神經網絡和非線性動態系統研究人員的專業資源。
目錄
前言
貢獻者
卡爾曼濾波器(S. Haykin)
基於參數的卡爾曼濾波器訓練:理論與實現(G. Puskorius 和 L. Feldkamp)
從圖像序列學習形狀和運動(G. Patel 等)
混沌動力學(G. Patel 和 S. Haykin)
雙重擴展卡爾曼濾波器方法(E. Wan 和 A. Nelson)
使用期望最大化算法學習非線性動態系統(S. Roweis 和 Z. Ghahramani)
無味卡爾曼濾波器(E. Wan 和 R. van der Merwe)
索引