Bio-Inspired Strategies for Modeling and Detection in Diabetes Mellitus Treatment (生物啟發策略於糖尿病治療中的建模與偵測)

Y. Alanis, Alma, D. Sánchez, Oscar, Vaca Gonzalez, Alonso

  • 出版商: Morgan Kaufmann
  • 出版日期: 2024-04-24
  • 售價: $6,380
  • 貴賓價: 9.5$6,061
  • 語言: 英文
  • 頁數: 152
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0443223416
  • ISBN-13: 9780443223419
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Bio-Inspired Strategies for Modeling and Detection in Diabetes Mellitus Treatment focuses on bioinspired techniques such as modeling to generate control algorithms for the treatment of diabetes mellitus. The book addresses the identification of diabetes mellitus using a high-order recurrent neural network trained by an extended Kalman filter. The authors also describe the use of metaheuristic algorithms for the parametric identification of compartmental models of diabetes mellitus widely used in research works such as the Sorensen model and the Dallaman model. In addition, the book addresses the modeling of time series for the prediction of risk scenarios such as hyperglycaemia and hypoglycaemia using deep neural networks. The detection of diabetes mellitus in the early stages or when current diagnostic techniques cannot detect glucose intolerance or prediabetes is proposed, carried out by means of deep neural networks present in the literature. Readers will find leading-edge research in diabetes identification based on discrete high-order neural networks trained with an extended Kalman filter; parametric identification of compartmental models used to describe diabetes mellitus; modeling of data obtained by continuous glucose-monitoring sensors for the prediction of risk scenarios such as hyperglycaemia and hypoglycaemia; and screening for glucose intolerance using glucose-tolerance test data and deep neural networks. Application of the proposed approaches is illustrated via simulation and real-time implementations for modeling, prediction, and classification.

商品描述(中文翻譯)

《生物啟發策略於糖尿病治療中的建模與檢測》專注於生物啟發技術,例如建模,以生成糖尿病治療的控制演算法。本書探討了使用經擴展卡爾曼濾波器訓練的高階遞迴神經網絡來識別糖尿病。作者還描述了使用元啟發式演算法進行糖尿病的區隔模型參數識別,這些模型在研究中廣泛使用,如Sorensen模型和Dallaman模型。此外,本書還探討了使用深度神經網絡對時間序列進行建模,以預測高血糖和低血糖等風險情境。提出在早期階段檢測糖尿病,或當現有診斷技術無法檢測葡萄糖不耐症或前糖尿病時,通過文獻中存在的深度神經網絡進行檢測。讀者將發現基於經擴展卡爾曼濾波器訓練的離散高階神經網絡的糖尿病識別前沿研究;用於描述糖尿病的區隔模型的參數識別;通過持續葡萄糖監測傳感器獲得的數據建模,以預測高血糖和低血糖等風險情境;以及使用葡萄糖耐受測試數據和深度神經網絡進行葡萄糖不耐症篩檢。所提出方法的應用通過模擬和實時實現進行說明,以進行建模、預測和分類。