Exploration and Analysis of DNA Microarray and Protein Array Data
暫譯: DNA 微陣列與蛋白質陣列數據的探索與分析

Dhammika Amaratunga, Javier Cabrera

  • 出版商: Wiley
  • 出版日期: 2003-10-21
  • 售價: $893
  • 語言: 英文
  • 頁數: 272
  • 裝訂: Hardcover
  • ISBN: 0471273988
  • ISBN-13: 9780471273981
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

相關主題

商品描述

 

Summary

A cutting-edge guide to the analysis of DNA microarray data

Genomics is one of the major scientific revolutions of this century, and the use of microarrays to rapidly analyze numerous DNA samples has enabled scientists to make sense of mountains of genomic data through statistical analysis. Today, microarrays are being used in biomedical research to study such vital areas as a drug’s therapeutic value–or toxicity–and cancer-spreading patterns of gene activity.

Exploration and Analysis of DNA Microarray and Protein Array Data answers the need for a comprehensive, cutting-edge overview of this important and emerging field. The authors, seasoned researchers with extensive experience in both industry and academia, effectively outline all phases of this revolutionary analytical technique, from the preprocessing to the analysis stage.

Highlights of the text include:

  • A review of basic molecular biology, followed by an introduction to microarrays and their preparation
  • Chapters on processing scanned images and preprocessing microarray data
  • Methods for identifying differentially expressed genes in comparative microarray experiments
  • Discussions of gene and sample clustering and class prediction
  • Extension of analysis methods to protein array data

Numerous exercises for self-study as well as data sets and a useful collection of computational tools on the authors’ Web site make this important text a valuable resource for both students and professionals in the field.

Table of Contents

Preface.

1 A Brief Introduction.

1.1 A Note on Exploratory Data Analysis.

1.2 Computing Considerations and Software.

1.3 A Brief Outline of the Book.

2 Genomics Basics.

2.1 Genes.

2.2 DNA.

2.3 Gene Expression.

2.4 Hybridization Assays and Other Laboratory Techniques.

2.5 The Human Genome.

2.6 Genome Variations and Their Consequences.

2.7 Genomics.

2.8 The Role of Genomics in Pharmaceutical Research.

2.9 Proteins.

2.10 Bioinformatics.

Supplementary Reading.

Exercises.

3 Microarrays.

3.1 Types of Microarray Experiments.

3.1.1 Experiment Type 1: Tissue-Specific Gene Expression.

3.1.2 Experiment Type 2: Developmental Genetics.

3.1.3 Experiment Type 3: Genetic Diseases.

3.1.4 Experiment Type 4: Complex Diseases.

3.1.5 Experiment Type 5: Pharmacological Agents.

3.1.6 Experiment Type 6: Plant Breeding.

3.1.7 Experiment Type 7: Environmental Monitoring.

3.2 A Very Simple Hypothetical Microarray Experiment.

3.3 A Typical Microarray Experiment.

3.3.1 Microarray Preparation.

3.3.2 Sample Preparation.

3.3.3 The Hybridization Step.

3.3.4 Scanning the Microarray.

3.3.5 Interpreting the Scanned Image.

3.4 Multichannel cDNA Microarrays.

3.5 Oligonucleotide Arrays.

3.6 Bead-Based Arrays.

3.7 Confirmation of Microarray Results.

Supplementary Reading and Electronic References.

Exercises.

4 Processing the Scanned Image.

4.1 Converting the Scanned Image to the Spotted Image.

4.1.1 Gridding.

4.1.2 Segmentation.

4.1.3 Quantification.

4.2 Quality Assessment.

4.2.1 Visualizing the Spotted Image.

4.2.2 Numerical Evaluation of Array Quality.

4.2.3 Spatial Problems.

4.2.4 Spatial Randomness.

4.2.5 Quality Control of Arrays.

4.2.6 Assessment of Spot Quality.

4.3 Adjusting for Background.

4.3.1 Estimating the Background.

4.3.2 Adjusting for the Estimated Background.

4.4 Expression Level Calculation for Two-Channel cDNA Microarrays.

4.5 Expression Level Calculation for Oligonucleotide Arrays.

4.5.1 The Average Difference.

4.5.2 A Weighted Average Difference.

4.5.3 Perfect Matches Only.

4.5.4 Background Adjustment Approach.

4.5.5 Model-Based Approach.

4.5.6 Absent-Present Calls.

Supplementary Reading.

Exercises.

5 Preprocessing Microarray Data.

5.1 Logarithmic Transformation.

5.2 Variance Stabilizing Transformations.

5.3 Sources of Bias.

5.4 Normalization.

5.5 Intensity-Dependent Normalization.

5.5.1 Smooth Function Normalization.

5.5.2 Quantile Normalization.

5.5.3 Normalization of Oligonucleotide Arrays.

5.5.4 Normalization of Two-Channel Arrays.

5.5.5 Spatial Normalization.

5.5.6 Stagewise Normalization.

5.6 Judging the Success of a Normalization.

5.7 Outlier Identification.

5.7.1 Nonresistant Rules for Outlier Identification.

5.7.2 Resistant Rules for Outlier Identification.

5.8 Assessing Replicate Array Quality.

Exercises.

6 Summarization.

6.1 Replication.

6.2 Technical Replicates.

6.3 Biological Replicates.

6.4 Experiments with Both Technical and Biological Replicates.

6.5 Multiple Oligonucleotide Arrays.

6.6 Estimating Fold Change in Two-Channel Experiments.

6.7 Bayes Estimation of Fold Change.

Exercises.

7 Two-Group Comparative Experiments.

7.1 Basics of Statistical Hypothesis Testing.

7.2 Fold Changes.

7.3 The Two-Sample t Test.

7.4 Diagnostic Checks.

7.5 Robust t Tests.

7.6 Randomization Tests.

7.7 The Mann–Whitney–Wilcoxon Rank Sum Test.

7.8 Multiplicity.

7.8.1 A Pragmatic Approach to the Issue of Multiplicity.

7.8.2 Simple Multiplicity Adjustments.

7.8.3 Sequential Multiplicity Adjustments.

7.9 The False Discovery Rate.

7.9.1 The Positive False Discovery Rate.

7.10 Small Variance-Adjusted t Tests and SAM.

7.10.1 Modifying the t Statistic.

7.10.2 Assesing Significance with the SAM t Statistic.

7.10.3 Strategies for Using SAM.

7.10.4 An Empirical Bayes Framework.

7.10.5 Understanding the SAM Adjustment.

7.11 Conditional t.

7.12 Borrowing Strength across Genes.

7.12.1 Simple Methods.

7.12.2 A Bayesian Model.

7.13 Two-Channel Experiments.

7.13.1 The Paired Sample t Test and SAM.

7.13.2 Borrowing Strength via Hierarchical Modeling.

Supplementary Reading.

Exercises.

8 Model-Based Inference and Experimental Design Considerations.

8.1 The F Test.

8.2 The Basic Linear Model.

8.3 Fitting the Model in Two Stages.

8.4 Multichannel Experiments.

8.5 Experimental Design Considerations.

8.5.1 Comparing Two Varieties with Two-Channel Microarrays.

8.5.2 Comparing Multiple Varieties with Two-Channel Microarrays.

8.5.3 Single-Channel Microarray Experiments.

8.6 Miscellaneous Issues.

Supplementary Reading.

Exercises.

9 Pattern Discovery.

9.1 Initial Considerations.

9.2 Cluster Analysis.

9.2.1 Dissimilarity Measures and Similarity Measures.

9.2.2 Guilt by Association.

9.2.3 Hierarchical Clustering.

9.2.4 Partitioning Methods.

9.2.5 Model-Based Clustering.

9.2.6 Chinese Restaurant Clustering.

9.2.7 Discussion.

9.3 Seeking Patterns Visually.

9.3.1 Principal Components Analysis.

9.3.2 Factor Analysis.

9.3.3 Biplots.

9.3.4 Spectral Map Analysis.

9.3.5 Multidimensional Scaling.

9.3.6 Projection Pursuit.

9.3.7 Data Visualization with the Grand Tour and Projection Pursuit.

9.4 Two-Way Clustering.

9.4.1 Block Clustering.

9.4.2 Gene Shaving.

9.4.3 The Plaid Model.

Software Notes.

Supplementary Reading.

Exercises.

10 Class Prediction.

10.1 Initial Considerations.

10.1.1 Misclassification Rates.

10.1.2 Reducing the Number of Classifiers.

10.2 Linear Discriminant Analysis.

10.3 Extensions of Fisher’s LDA.

10.4 Nearest Neighbors.

10.5 Recursive Partitioning.

10.5.1 Classification Trees.

10.5.2 Activity Region Finding.

10.6 Neural Networks.

10.7 Support Vector Machines.

10.8 Integration of Genomic Information.

10.8.1 Integration of Gene Expression Data and Molecular Structure Data.

10.8.2 Pathway Inference.

Software Notes.

Supplementary Reading.

Exercises.

11 Protein Arrays.

11.1 Introduction.

11.2 Protein Array Experiments.

11.3 Special Issues with Protein Arrays.

11.4 Analysis.

11.5 Using Antibody Antigen Arrays to Measure Protein Concentrations.

Exercises.

References.

Author Index.

Subject Index.

商品描述(中文翻譯)

摘要

一部關於DNA微陣列數據分析的前沿指南
基因組學是本世紀主要的科學革命之一,利用微陣列快速分析大量DNA樣本,使科學家能夠通過統計分析理解海量的基因組數據。如今,微陣列被用於生物醫學研究,以研究藥物的治療價值或毒性,以及癌症擴散的基因活性模式。
《DNA微陣列和蛋白質陣列數據的探索與分析》滿足了對這一重要新興領域的全面、前沿概述的需求。作者是擁有豐富行業和學術經驗的資深研究人員,有效地概述了這一革命性分析技術的所有階段,從預處理到分析階段。
本書的重點包括:
- 基本分子生物學的回顧,隨後介紹微陣列及其準備
- 處理掃描圖像和預處理微陣列數據的章節
- 在比較微陣列實驗中識別差異表達基因的方法
- 基因和樣本聚類及類別預測的討論
- 將分析方法擴展到蛋白質陣列數據

大量的自學練習以及數據集和作者網站上的有用計算工具,使這本重要的文本成為該領域學生和專業人士的寶貴資源。

目錄

前言
1 簡介
1.1 探索性數據分析的注意事項
1.2 計算考量和軟體
1.3 本書簡要大綱
2 基因組學基礎
2.1 基因
2.2 DNA
2.3 基因表達
2.4 雜交檢測和其他實驗室技術
2.5 人類基因組
2.6 基因組變異及其後果
2.7 基因組學
2.8 基因組學在藥物研究中的角色
2.9 蛋白質
2.10 生物資訊學
補充閱讀
練習
3 微陣列
3.1 微陣列實驗的類型
3.1.1 實驗類型1:組織特異性基因表達
3.1.2 實驗類型2:發展遺傳學
3.1.3 實驗類型3:遺傳疾病
3.1.4 實驗類型4:複雜疾病
3.1.5 實驗類型5:藥理學劑
3.1.6 實驗類型6:植物育種
3.1.7 實驗類型7:環境監測
3.2 一個非常簡單的假設性微陣列實驗
3.3 一個典型的微陣列實驗
3.3.1 微陣列準備
3.3.2 樣本準備
3.3.3 雜交步驟
3.3.4 掃描微陣列
3.3.5 解釋掃描圖像
3.4 多通道cDNA微陣列
3.5 寡核苷酸陣列
3.6 珠基陣列
3.7 微陣列結果的確認
補充閱讀和電子參考
練習
4 處理掃描圖像
4.1 將掃描圖像轉換為點陣圖像
4.1.1 網格化
4.1.2 分割
4.1.3 定量
4.2 質量評估
4.2.1 可視化點陣圖像
4.2.2 陣列質量的數值評估
4.2.3 空間問題
4.2.4 空間隨機性
4.2.5 陣列的質量控制
4.2.6 點質量的評估
4.3 背景調整
4.3.1 背景估計
4.3.2 根據估計的背景進行調整
4.4 兩通道cDNA微陣列的表達水平計算
4.5 寡核苷酸陣列的表達水平計算
4.5.1 平均差
4.5.2 加權平均差
4.5.3 僅完美匹配
4.5.4 背景調整方法
4.5.5 基於模型的方法
4.5.6 缺失-存在判斷
補充閱讀
練習
5 微陣列數據的預處理
5.1 對數轉換
5.2 方差穩定轉換
5.3 偏差來源
5.4 正規化
5.5 強度依賴的正規化
5.5.1 平滑函數正規化
5.5.2 分位數正規化
5.5.3 寡核苷酸陣列的正規化
5.5.4 兩通道陣列的正規化
5.5.5 空間正規化
5.5.6 階段性正規化
5.6 判斷正規化的成功
5.7 異常值識別
5.7.1 非抗干擾的異常值識別規則
5.7.2 抗干擾的異常值識別規則
5.8 評估重複陣列質量
練習
6 總結
6.1 複製
6.2 技術複製
6.3 生物複製
6.4 同時具有技術和生物複製的實驗
6.5 多個寡核苷酸陣列
6.6 在兩通道實驗中估計倍數變化
6.7 貝葉斯估計倍數變化
練習
7 兩組比較實驗
7.1 統計假設檢驗的基本知識
7.2 倍數變化
7.3 兩樣本t檢驗
7.4 診斷檢查
7.5 穩健的t檢驗
7.6 隨機化檢驗
7.7 Mann–Whitney–Wilcoxon秩和檢驗
7.8 多重性
7.8.1 實用的多重性問題處理方法
7.8.2 簡單的多重性調整
7.8.3 階段性多重性調整
7.9 假陽性發現率
7.9.1 正假陽性發現率
7.10 小方差調整的t檢驗和SAM
7.10.1 修改t統計量
7.10.2 使用SAM t統計量評估顯著性
7.10.3 使用SAM的策略
7.10.4 實證貝葉斯框架
7.10.5 理解SAM調整
7.11 條件t
7.12 跨基因借用力量
7.12.1 簡單方法
7.12.2 貝葉斯模型
7.13 兩通道實驗
7.13.1 配對樣本t檢驗和SAM
7.13.2 通過分層建模借用力量
補充閱讀
練習
8 基於模型的推斷和實驗設計考量
8.1 F檢驗
8.2 基本線性模型
8.3 兩階段擬合模型
8.4 多通道實驗
8.5 實驗設計考量
8.5.1 使用兩通道微陣列比較兩個品種
8.5.2 使用兩通道微陣列比較多個品種
8.5.3 單通道微陣列實驗
8.6 其他問題
補充閱讀
練習
9 模式發現
9.1 初步考量
9.2 聚類分析
9.2.1 不相似度度量和相似度度量
9.2.2 以關聯為罪
9.2.3 階層聚類
9.2.4 分區方法
9.2.5 基於模型的聚類
9.2.6 中式餐廳聚類
9.2.7 討論
9.3 以視覺方式尋找模式
9.3.1 主成分分析
9.3.2 因子分析
9.3.3 雙變量圖
9.3.4 頻譜圖分析
9.3.5 多維縮放
9.3.6 投影追尋
9.3.7 使用大巡演和投影追尋進行數據可視化
9.4 雙向聚類
9.4.1 區塊聚類
9.4.2 基因修剪
9.4.3 格子模型
軟體說明
補充閱讀
練習
10 類別預測
10.1 初步考量
10.1.1 錯誤分類率
10.1.2 減少分類器數量
10.2 線性判別分析
10.3 Fisher的LDA擴展
10.4 最近鄰
10.5 迴圈分割
10.5.1 分類樹
10.5.2 活動區域尋找
10.6 神經網絡
10.7 支持向量機
10.8 基因組信息的整合
10.8.1 基因表達數據和分子結構數據的整合
10.8.2 路徑推斷
軟體說明
補充閱讀
練習
11 蛋白質陣列
11.1 介紹
11.2 蛋白質陣列實驗
11.3 蛋白質陣列的特殊問題
11.4 分析
11.5 使用抗體抗原陣列測量蛋白質濃度
參考文獻
作者索引
主題索引

最後瀏覽商品 (20)