Exploratory Data Mining and Data Cleaning
暫譯: 探索性資料挖掘與資料清理
Tamraparni Dasu, Theodore Johnson
- 出版商: Wiley
- 出版日期: 2003-06-10
- 售價: $1,180
- 貴賓價: 9.8 折 $1,156
- 語言: 英文
- 頁數: 224
- 裝訂: Hardcover
- ISBN: 0471268518
- ISBN-13: 9780471268512
-
相關分類:
Data-mining
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$1,100$1,078 -
$680$537 -
$2,660$2,527 -
$1,920$1,824 -
$399Metadata Solutions: Using Metamodels, Repositories, XML, and Enterprise Portals
-
$980$774 -
$1,600$1,568 -
$560$476 -
$450$351 -
$2,450$2,328 -
$990Mining the Web: Discovering Knowledge for Hypertext Data
-
$650$514 -
$760$600 -
$580$493 -
$590$466 -
$720$562 -
$720$569 -
$560$442 -
$290$247 -
$640$544 -
$560$442 -
$750$638 -
$281程序員修煉之道 :從小工到專家 (The Pragmatic Programmer: From Journeyman to Master)
-
$199$157 -
$1,300$1,235
商品描述
Data analysts at information-intensive businesses are frequently asked to analyze new data sets that are often dirty–composed of numerous tables possessing unknown properties. Prior to analysis, this data must be cleaned and explored–often a long and arduous task. Ensuring data quality is a notoriously messy problem that can only be addressed by drawing on methods from many disciplines, including statistics, exploratory data mining, database management, and metadata coding.
Where other books on data mining and analysis focus primarily on the last stage of the analysis procedure, Exploratory Data Mining and Data Cleaning uses a uniquely integrated approach to data exploration and data cleaning to develop a suitable modeling strategy that will help analysts to more effectively determine and implement the final technique.
The authors, both seasoned data analysts at a major corporation, draw on their own professional experience to:
- Present a brief overview of the main analytical techniques used in data mining practices, such as univariate and multivariate summaries of attributes and their interactions including Q -Q plots, fractal dimension and histograms, nonparametric approaches incorporating data depth, and more
- Provide numerous references to the related literature on clustering, classification, regression, and more
- Focus on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge
- Address methods of detecting, quantifying (metrics), and correcting data quality issues that significantly impact findings and decisions, using commercially available tools as well as new algorithmic approaches
- Use case studies to illustrate applications in real-life scenarios
- Highlight new approaches and methodologies, such as the DataSphere space partitioning and summary-based analysis techniques
A groundbreaking addition to the existing literature, Exploratory Data Mining and Data Cleaning serves as an important reference for data analysts who need to analyze large amounts of unfamiliar data, operations managers, and students in undergraduate or graduate-level courses dealing with data analysis and data mining.
Table of Contents
0 Preface.
1 Exploratory Data Mining and Data Cleaning: An Overview.
2 Exploratory Data Mining.
3 Partitions and Piecewise Models.
4 Data Quality.
5 Data Quality: Techniques and Algorithms.
商品描述(中文翻譯)
獨特的整合方法:探索性資料挖掘與資料品質
資料密集型企業的資料分析師經常被要求分析新的資料集,這些資料集通常是「髒的」——由許多擁有未知屬性的表格組成。在分析之前,這些資料必須被清理和探索——這通常是一項漫長而艱鉅的任務。確保資料品質是一個臭名昭著的複雜問題,只有通過借鑒來自多個學科的方法才能解決,包括統計學、探索性資料挖掘、資料庫管理和元資料編碼。
與其他專注於分析程序最後階段的資料挖掘和分析書籍不同,《探索性資料挖掘與資料清理》採用獨特的整合方法來進行資料探索和資料清理,以發展出適合的建模策略,幫助分析師更有效地確定和實施最終技術。
作者是兩位在大型企業工作的資深資料分析師,他們根據自己的專業經驗來:
- 簡要概述資料挖掘實踐中使用的主要分析技術,例如單變量和多變量屬性及其交互作用的摘要,包括 Q-Q 圖、分形維度和直方圖、結合資料深度的非參數方法等。
- 提供與聚類、分類、回歸等相關文獻的眾多參考。
- 專注於通過迭代的資料探索循環和領域知識的整合來發展不斷演變的建模策略。
- 討論檢測、量化(指標)和修正對發現和決策有重大影響的資料品質問題的方法,使用商業可用工具以及新的算法方法。
- 使用案例研究來說明在現實場景中的應用。
- 突出新的方法和技術,例如 DataSphere 空間劃分和基於摘要的分析技術。
《探索性資料挖掘與資料清理》是對現有文獻的突破性補充,為需要分析大量不熟悉資料的資料分析師、運營經理以及在本科或研究生層次的資料分析和資料挖掘課程中學習的學生提供了重要的參考。
目錄
0 前言
1 探索性資料挖掘與資料清理:概述
2 探索性資料挖掘
3 劃分與分段模型
4 資料品質
5 資料品質:技術與算法