The Microsoft Data Warehouse Toolkit: With SQL Server 2005 and the Microsoft Business Intelligence Toolset
暫譯: 微軟數據倉儲工具包:使用 SQL Server 2005 和微軟商業智慧工具集
Joy Mundy, Warren Thornthwaite
買這商品的人也買了...
-
$2,400$2,280 -
$650$429 -
$490$382 -
$1,445The Data Warehouse ETL Toolkit : Practical Techniques for Extracting, Cleaning, Conforming, and Delivering Data
-
$880$695 -
$880$695 -
$580$493 -
$390$332 -
$890$757 -
$780$741 -
$450$383 -
$580$493 -
$2,120$2,014 -
$780$663 -
$520$442 -
$620$490 -
$580$493 -
$650$507 -
$680$578 -
$980$774 -
$780$663 -
$680$578 -
$450$383 -
$780$616 -
$720$612
相關主題
商品描述
Description
This groundbreaking book is the first in the Kimball Toolkit series to be product-specific. Microsoft’s BI toolset has undergone significant changes in the SQL Server 2005 development cycle. SQL Server 2005 is the first viable, full-functioned data warehouse and business intelligence platform to be offered at a price that will make data warehousing and business intelligence available to a broad set of organizations. This book is meant to offer practical techniques to guide those organizations through the myriad of challenges to true success as measured by contribution to business value.
Building a data warehousing and business intelligence system is a complex business and engineering effort. While there are significant technical challenges to overcome in successfully deploying a data warehouse, the authors find that the most common reason for data warehouse project failure is insufficient focus on the business users and business problems. In an effort to help people gain success, this book takes the proven Business Dimensional Lifecycle approach first described in best selling The Data Warehouse Lifecycle Toolkit and applies it to the Microsoft SQL Server 2005 tool set.
Beginning with a thorough description of how to gather business requirements, the book then works through the details of creating the target dimensional model, setting up the data warehouse infrastructure, creating the relational atomic database, creating the analysis services databases, designing and building the standard report set, implementing security, dealing with metadata, managing ongoing maintenance and growing the DW/BI system. All of these steps tie back to the business requirements. Each chapter describes the practical steps in the context of the SQL Server 2005 platform.
Intended Audience
The target audience for this book is the IT department or service provider (consultant) who is:
- Planning a small to mid-range data warehouse project;
- Evaluating or planning to use Microsoft technologies as the primary or exclusive data warehouse server technology;
- Familiar with the general concepts of data warehousing and business intelligence.
The book will be directed primarily at the project leader and the warehouse developers, although everyone involved with a data warehouse project will find the book useful. Some of the book’s content will be more technical than the typical project leader will need; other chapters and sections will focus on business issues that are interesting to a database administrator or programmer as guiding information.
The book is focused on the mass market, where the volume of data in a single application or data mart is less than 500 GB of raw data. While the book does discuss issues around handling larger warehouses in the Microsoft environment, it is not exclusively, or even primarily, concerned with the unusual challenges of extremely large datasets.
About the Authors
JOY MUNDY has focused on data warehousing and business intelligence since the early 1990s, specializing in business requirements analysis, dimensional modeling, and business intelligence systems architecture. Joy co-founded InfoDynamics LLC, a data warehouse consulting firm, then joined Microsoft WebTV to develop closed-loop analytic applications and a packaged data warehouse.
Before returning to consulting with the Kimball Group in 2004, Joy worked in Microsoft SQL Server product development, managing a team that developed the best practices for building business intelligence systems on the Microsoft platform. Joy began her career as a business analyst in banking and finance. She graduated from Tufts University with a BA in Economics, and from Stanford with an MS in Engineering Economic Systems.
WARREN THORNTHWAITE has been building data warehousing and business intelligence systems since 1980. Warren worked at Metaphor for eight years, where he managed the consulting organization and implemented many major data warehouse systems. After Metaphor, Warren managed the enterprise-wide data warehouse development at Stanford University. He then co-founded InfoDynamics LLC, a data warehouse consulting firm, with his co-author, Joy Mundy. Warren joined up with WebTV to help build a world class, multi-terabyte customer focused data warehouse before returning to consulting with the Kimball Group. In addition to designing data warehouses for a range of industries, Warren speaks at major industry conferences and for leading vendors, and is a long-time instructor for Kimball University. Warren holds an MBA in Decision Sciences from the University of Pennsylvania's Wharton School, and a BA in Communications Studies from the University of Michigan.
RALPH KIMBALL, PH.D., has been a leading visionary in the data warehouse industry since 1982 and is one of today's most internationally well-known authors, speakers, consultants, and teachers on data warehousing. He writes the "Data Warehouse Architect" column for Intelligent Enterprise (formerly DBMS) magazine.
Table of Contents
PART I: REQUIREMENTS, REALITIES, AND ARCHITECTURE.
1. Defining Business Requirements.
2. Designing the Business Process Dimensional Model.
3. The Toolset.
PART II: DEVELOPING AND POPULATING THE DATABASES.
4. Setup and Physical Design.
5. Designing the ETL System.
6. Developing the ETL System.
7. Designing the Aanalysis Services OLAP Database.
PART III: DEVELOPING THE BI APPLICATIONS.
8. Business Intelligence Applications.
9. Building the BI Application in Reporting Services.
10. Incorporating Data Mining.
PART IV: DEPLOYING AND MANAGING THE DW/BI SYSTEM.
11. Working with an Existing Data Warehouse.
12. Security.
13. Metadata.
14. Deploying the BI System.
15. Operations and Maintenance.
PART V: EXTENDING THE DW/BI SYSTEM.
16. Managing Growth.
17. Real-Time Business Intelligence.
18. Present Imperatives and Future Outlook.
Index.
商品描述(中文翻譯)
**描述**
這本開創性的書籍是 Kimball Toolkit 系列中第一本針對特定產品的書。微軟的商業智慧(BI)工具集在 SQL Server 2005 的開發週期中經歷了重大變化。SQL Server 2005 是第一個可行的、功能完整的資料倉儲和商業智慧平台,提供的價格使得資料倉儲和商業智慧能夠被廣泛的組織所使用。本書旨在提供實用的技術,指導這些組織克服眾多挑戰,以實現真正的成功,這成功是以對商業價值的貢獻來衡量的。
建立一個資料倉儲和商業智慧系統是一項複雜的商業和工程工作。雖然在成功部署資料倉儲時需要克服重大技術挑戰,但作者發現,資料倉儲專案失敗的最常見原因是對商業使用者和商業問題的關注不足。為了幫助人們獲得成功,本書採用了在暢銷書《資料倉儲生命週期工具包》中首次描述的經驗豐富的商業維度生命週期方法,並將其應用於微軟 SQL Server 2005 工具集。
本書首先詳細描述如何收集商業需求,然後逐步介紹創建目標維度模型、設置資料倉儲基礎設施、創建關聯原子資料庫、創建分析服務資料庫、設計和建立標準報告集、實施安全性、處理元資料、管理持續維護以及擴展 DW/BI 系統的細節。所有這些步驟都與商業需求相連。每一章都在 SQL Server 2005 平台的背景下描述實際步驟。
**目標讀者**
本書的目標讀者是 IT 部門或服務提供者(顧問),他們是:
- 計劃一個小型到中型的資料倉儲專案;
- 評估或計劃使用微軟技術作為主要或唯一的資料倉儲伺服器技術;
- 熟悉資料倉儲和商業智慧的一般概念。
本書主要針對專案負責人和資料倉儲開發人員,雖然所有參與資料倉儲專案的人都會發現本書有用。本書的一些內容將比典型專案負責人所需的更具技術性;其他章節和部分將專注於對資料庫管理員或程式設計師有趣的商業問題,作為指導資訊。
本書專注於大眾市場,其中單一應用程式或資料集市中的資料量少於 500 GB 的原始資料。雖然本書確實討論了在微軟環境中處理更大資料倉儲的問題,但它並不專門或主要關注極大資料集的特殊挑戰。
**關於作者**
**JOY MUNDY** 自 1990 年代初期以來專注於資料倉儲和商業智慧,專門從事商業需求分析、維度建模和商業智慧系統架構。Joy 共同創立了資料倉儲顧問公司 InfoDynamics LLC,然後加入微軟 WebTV 開發閉環分析應用程式和打包資料倉儲。
在 2004 年回到 Kimball Group 顧問工作之前,Joy 在微軟 SQL Server 產品開發中工作,管理一個團隊,開發在微軟平台上構建商業智慧系統的最佳實踐。Joy 的職業生涯始於銀行和金融領域的商業分析師。她畢業於塔夫茨大學,獲得經濟學學士學位,並在斯坦福大學獲得工程經濟系統碩士學位。
**WARREN THORNTHWAITE** 自 1980 年以來一直在構建資料倉儲和商業智慧系統。Warren 在 Metaphor 工作了八年,管理顧問組織並實施了許多主要的資料倉儲系統。在 Metaphor 之後,Warren 管理了斯坦福大學的企業級資料倉儲開發。然後,他與共同作者 Joy Mundy 共同創立了資料倉儲顧問公司 InfoDynamics LLC。Warren 加入 WebTV 幫助建立一個世界級的、多 TB 的以客戶為中心的資料倉儲,然後回到 Kimball Group 擔任顧問。除了為各行各業設計資料倉儲外,Warren 還在主要行業會議和領先供應商的活動中發言,並且是 Kimball University 的長期講師。Warren 擁有賓夕法尼亞大學沃頓商學院的決策科學 MBA 和密西根大學的傳播學學士學位。
**RALPH KIMBALL, PH.D.** 自 1982 年以來一直是資料倉儲行業的領先願景家,是當今國際知名的資料倉儲作者、演講者、顧問和教師之一。他為《Intelligent Enterprise》(前身為 DBMS)雜誌撰寫「資料倉儲架構師」專欄。
**目錄**
第一部分:需求、現實與架構。
1. 定義商業需求。
2. 設計商業流程維度模型。
3. 工具集。
第二部分:開發和填充資料庫。
4. 設置和物理設計。
5. 設計 ETL 系統。
6. 開發 ETL 系統。
7. 設計分析服務 OLAP 資料庫。
第三部分:開發 BI 應用程式。
8. 商業智慧應用程式。
9. 在報告服務中構建 BI 應用程式。
10. 整合資料挖掘。
第四部分:部署和管理 DW/BI 系統。
11. 與現有資料倉儲合作。
12. 安全性。
13. 元資料。
14. 部署 BI 系統。
15. 操作和維護。
第五部分:擴展 DW/BI 系統。
16. 管理增長。
17. 實時商業智慧。
18. 當前的迫切需求和未來展望。
索引。