The Data Warehouse Mentor: Practical Data Warehouse and Business Intelligence Insights (Paperback)
暫譯: 數據倉儲導師:實用的數據倉儲與商業智慧見解(平裝本)

Robert Laberge

  • 出版商: McGraw-Hill Education
  • 出版日期: 2011-06-02
  • 定價: $1,785
  • 售價: 8.0$1,428
  • 語言: 英文
  • 頁數: 416
  • 裝訂: Paperback
  • ISBN: 0071745327
  • ISBN-13: 9780071745321
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Develop a custom, agile data warehousing and business intelligence architecture

Empower your users and drive better decision making across your enterprise with detailed instructions and best practices from an expert developer and trainer. The Data Warehouse Mentor: Practical Data Warehouse and Business Intelligence Insights shows how to plan, design, construct, and administer an integrated end-to-end DW/BI solution. Learn how to choose appropriate components, build an enterprise data model, configure data marts and data warehouses, establish data flow, and mitigate risk. Change management, data governance, and security are also covered in this comprehensive guide.

  • Understand the components of BI and data warehouse systems
  • Establish project goals and implement an effective deployment plan
  • Build accurate logical and physical enterprise data models
  • Gain insight into your company's transactions with data mining
  • Input, cleanse, and normalize data using ETL (Extract, Transform, and Load) techniques
  • Use structured input files to define data requirements
  • Employ top-down, bottom-up, and hybrid design methodologies
  • Handle security and optimize performance using data governance tools

Robert Laberge is the founder of several Internet ventures and a principle consultant for the IBM Industry Models and Assets Lab, which has a focus on data warehousing and business intelligence solutions.

商品描述(中文翻譯)

開發自訂的敏捷數據倉儲和商業智慧架構

透過專家開發者和培訓師提供的詳細指導和最佳實踐,賦能您的用戶並促進企業內部更好的決策。《數據倉儲導師:實用的數據倉儲和商業智慧見解》展示了如何規劃、設計、建構和管理一個整合的端到端 DW/BI 解決方案。學習如何選擇適當的組件、建立企業數據模型、配置數據集市和數據倉儲、建立數據流以及降低風險。本綜合指南還涵蓋了變更管理、數據治理和安全性。

- 了解商業智慧和數據倉儲系統的組件
- 確立專案目標並實施有效的部署計劃
- 建立準確的邏輯和物理企業數據模型
- 通過數據挖掘深入了解公司的交易
- 使用 ETL(提取、轉換和加載)技術輸入、清理和標準化數據
- 使用結構化輸入文件來定義數據需求
- 採用自上而下、自下而上和混合設計方法
- 使用數據治理工具處理安全性並優化性能

**Robert Laberge** 是多個互聯網企業的創始人,也是 IBM 行業模型和資產實驗室的首席顧問,該實驗室專注於數據倉儲和商業智慧解決方案。