Object Detection and Recognition in Digital Images: Theory and Practice (Hardcover)
暫譯: 數位影像中的物體偵測與識別:理論與實務 (精裝版)
Boguslaw Cyganek
- 出版商: Wiley
- 出版日期: 2013-08-05
- 售價: $5,500
- 貴賓價: 9.5 折 $5,225
- 語言: 英文
- 頁數: 548
- 裝訂: Hardcover
- ISBN: 0470976373
- ISBN-13: 9780470976371
下單後立即進貨 (約1~3週)
買這商品的人也買了...
-
$1,450$1,421 -
$880$695 -
$620$490 -
$738Digital Image Processing, 3/e (IE-Paperback)
-
$1,026Assembly Language for x86 Processors, 6/e (IE-Paperback)
-
$590$466 -
$520$468 -
$780$663 -
$560$476 -
$520$343 -
$580$452 -
$480$408 -
$1,500$990 -
$349$297 -
$360$281 -
$680$578 -
$250機器學習系統設計 (Building Machine Learning Systems with Python)
-
$780$616 -
$2,485$2,361 -
$1,218R in Action: Data Analysis and Graphics with R, 2/e (Paperback)
-
$580$458 -
$450$356 -
$550$468 -
$1,600$1,600 -
$6,030$5,729
相關主題
商品描述
Object detection, tracking and recognition in images are key problems in computer vision. This book provides the reader with a balanced treatment between the theory and practice of selected methods in these areas to make the book accessible to a range of researchers, engineers, developers and postgraduate students working in computer vision and related fields.
Key features:
- Explains the main theoretical ideas behind each method (which are augmented with a rigorous mathematical derivation of the formulas), their implementation (in C++) and demonstrated working in real applications.
- Places an emphasis on tensor and statistical based approaches within object detection and recognition.
- Provides an overview of image clustering and classification methods which includes subspace and kernel based processing, mean shift and Kalman filter, neural networks, and k-means methods.
- Contains numerous case study examples of mainly automotive applications.
- Includes a companion website hosting full C++ implementation, of topics presented in the book as a software library, and an accompanying manual to the software platform.
商品描述(中文翻譯)
物體檢測、追蹤和識別是計算機視覺中的關鍵問題。本書為讀者提供了理論與實踐之間的平衡處理,涵蓋了這些領域中選定方法的內容,使本書對於從事計算機視覺及相關領域的研究人員、工程師、開發者和研究生都能夠輕鬆理解。
主要特點:
- 解釋每種方法背後的主要理論思想(並附有嚴謹的數學推導公式),其實現(使用 C++)並在實際應用中展示其效果。
- 強調基於張量和統計的方法在物體檢測和識別中的應用。
- 提供影像聚類和分類方法的概述,包括子空間和核基處理、均值漂移和卡爾曼濾波器、神經網絡以及 k-means 方法。
- 包含多個主要針對汽車應用的案例研究示例。
- 包括一個伴隨網站,提供書中所介紹主題的完整 C++ 實現,作為軟體庫,以及該軟體平台的手冊。