Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation (Hardcover) (非負矩陣與張量分解:探索性多維數據分析與盲源分離的應用)

Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, Shun-ichi Amari

  • 出版商: Wiley
  • 出版日期: 2009-11-01
  • 售價: $6,450
  • 貴賓價: 9.5$6,128
  • 語言: 英文
  • 頁數: 500
  • 裝訂: Hardcover
  • ISBN: 0470746661
  • ISBN-13: 9780470746660
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models.

Key features:

  • Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area.
  • Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms.
  • Provides a comparative analysis of the different methods in order to identify approximation error and complexity.
  • Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book.

The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

商品描述(中文翻譯)

本書提供了非負矩陣分解(Nonnegative Matrix Factorization, NMF)模型和高效演算法的廣泛概述。這包括NMF的各種擴展和修改,特別是非負張量分解(Nonnegative Tensor Factorizations, NTF)和非負塔克分解(Nonnegative Tucker Decompositions, NTD)。NMF/NTF及其擴展在信號和影像處理以及數據分析中越來越多地被用作工具,因其能夠提供有關實驗數據集中複雜潛在關係的新見解和相關信息而受到關注。建議NMF可以提供具有物理解釋的有意義組件;例如,在生物信息學中,NMF及其擴展已成功應用於基因表達、序列分析、基因的功能特徵化、聚類和文本挖掘。因此,作者專注於在實踐中最有用的演算法,著眼於最快、最穩健且適合大規模模型的演算法。

主要特點:
- 作為NMF的單一來源參考指南,彙集了當前文獻中廣泛分散的信息,包括作者最近在該領域開發的技術。
- 使用廣義成本函數,如Bregman、Alpha和Beta散度,展示幾種穩健演算法的實際實現,特別是乘法、交替最小二乘法、投影梯度法和準牛頓演算法。
- 提供不同方法的比較分析,以識別近似誤差和複雜性。
- 包含幾乎所有書中呈現的演算法的偽代碼和優化的MATLAB源代碼。

對非負矩陣和張量分解、以及數據的分解和稀疏表示日益增長的興趣,將確保本書對於信號和影像處理、神經科學、數據挖掘和數據分析、計算機科學、生物信息學、語音處理、生物醫學工程和多媒體領域的工程師、科學家、研究人員、行業從業者和研究生來說是必讀之作。