Kernel Methods for Remote Sensing Data Analysis (Hardcover)
暫譯: 遙感數據分析的核心方法 (精裝版)

Gustavo Camps-Valls, Professor Lorenzo Bruzzone

  • 出版商: Wiley
  • 出版日期: 2009-12-01
  • 定價: $4,980
  • 售價: 9.0$4,482
  • 語言: 英文
  • 頁數: 434
  • 裝訂: Hardcover
  • ISBN: 0470722118
  • ISBN-13: 9780470722114
  • 相關分類: Data Science
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

商品描述

Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful  across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection.

 

Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges:

  • Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods.
  • Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection.
  • Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification.
  • Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs. 
  • Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions.

This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition.

商品描述(中文翻譯)

內核方法長期以來被確立為機器學習和模式識別框架中的有效技術,現在已成為許多遙感應用的標準方法。透過結合統計學和幾何學的演算法,內核方法在與從空中和衛星傳感器獲取的地球影像分析相關的許多不同領域中證明了其成功,包括自然資源管理、對人類基礎設施(例如城市區域)的檢測和監測、農業清查、災害預防和損害評估,以及異常和目標檢測。

本書介紹了與遙感領域相關的內核方法(KMs)的理論基礎,並作為這些方法設計和實施的實用指南。五個不同的部分展示了基於內核方法的最新研究,分析了相關的方法論和實際挑戰:

- 第一部分介紹了遙感機器學習的關鍵概念,以及內核方法的理論和實踐基礎。
- 第二部分探討了監督式影像分類,包括支持向量機(SVMs)、內核判別分析、多時相影像分類、使用內核的目標檢測,以及用於異常檢測的支持向量數據描述(SVDD)演算法。
- 第三部分關注半監督式分類,使用傳導式 SVM 方法進行高光譜影像分類和內核均值數據分類。
- 第四部分檢視回歸和模型反演,包括高光譜影像的內核解混演算法概念、基於內核方程的定量遙感反問題的理論和方法、基於內核的 BRDF(雙向反射分佈函數)以及溫度檢索 KMs。
- 第五部分處理基於內核的特徵提取,並回顧幾種多變量分析方法的原則及其內核擴展。

本書旨在為從事遙感數據處理的工程師、科學家和研究人員,以及在機器學習和模式識別領域工作的相關人員提供參考。

最後瀏覽商品 (20)