Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods (Hardcover)
暫譯: 自動語音與說話者識別:大邊界與核方法 (精裝版)

Joseph Keshet, Samy Bengio

  • 出版商: Wiley
  • 出版日期: 2009-03-01
  • 定價: $4,350
  • 售價: 5.0$2,175
  • 語言: 英文
  • 頁數: 268
  • 裝訂: Hardcover
  • ISBN: 0470696834
  • ISBN-13: 9780470696835
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

相關主題

商品描述

This book discusses large margin and kernel methods for speech and speaker recognition

Speech and Speaker Recognition: Large Margin and Kernel Methods is a collation of research in the recent advances in large margin and kernel methods, as applied to the field of speech and speaker recognition. It presents theoretical and practical foundations of these methods, from support vector machines to large margin methods for structured learning. It also provides examples of large margin based acoustic modelling for continuous speech recognizers, where the grounds for practical large margin sequence learning are set. Large margin methods for discriminative language modelling and text independent speaker verification are also addressed in this book.

Key Features:

  • Provides an up-to-date snapshot of the current state of research in this field
  • Covers important aspects of extending the binary support vector machine to speech and speaker recognition applications
  • Discusses large margin and kernel method algorithms for sequence prediction required for acoustic modeling
  • Reviews past and present work on discriminative training of language models, and describes different large margin algorithms for the application of part-of-speech tagging
  • Surveys recent work on the use of kernel approaches to text-independent speaker verification, and introduces the main concepts and algorithms
  • Surveys recent work on kernel approaches to learning a similarity matrix from data

This book will be of interest to researchers, practitioners, engineers, and scientists in speech processing and machine learning fields.

商品描述(中文翻譯)

本書討論大邊界和核方法在語音及說話者識別中的應用


語音與說話者識別:大邊界與核方法 是對近期在大邊界和核方法方面的研究進展的整理,這些方法應用於語音和說話者識別領域。它介紹了這些方法的理論和實踐基礎,從支持向量機到結構化學習的大邊界方法。書中還提供了基於大邊界的連續語音識別器的聲學建模示例,為實用的大邊界序列學習奠定了基礎。本書還探討了用於判別語言建模和文本獨立說話者驗證的大邊界方法。


主要特點:


  • 提供該領域當前研究狀態的最新快照

  • 涵蓋將二元支持向量機擴展到語音和說話者識別應用的重要方面

  • 討論聲學建模所需的序列預測的大邊界和核方法算法

  • 回顧語言模型的判別訓練的過去和現在的工作,並描述不同的大邊界算法在詞性標註應用中的使用

  • 調查最近在文本獨立說話者驗證中使用核方法的工作,並介紹主要概念和算法

  • 調查最近在從數據學習相似性矩陣的核方法的工作




本書將對語音處理和機器學習領域的研究人員、實踐者、工程師和科學家感興趣。