Wireless Communications: Algorithmic Techniques (Hardcover)
暫譯: 無線通信:演算法技術 (精裝版)

Giorgio Vitetta, Desmond P. Taylor, Giulio Colavolpe, Fabrizio Pancaldi, Philippa A. Martin

  • 出版商: Wiley
  • 出版日期: 2013-05-28
  • 售價: $1,650
  • 貴賓價: 9.8$1,617
  • 語言: 英文
  • 頁數: 744
  • 裝訂: Hardcover
  • ISBN: 0470512393
  • ISBN-13: 9780470512395
  • 相關分類: Algorithms-data-structuresWireless-networks
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

<內容簡介>

This book introduces the theoretical elements at the basis of various classes of algorithms commonly employed in the physical layer (and, in part, in MAC layer) of wireless communications systems. It focuses on single user systems, so ignoring multiple access techniques. Moreover, emphasis is put on single-input single-output (SISO) systems, although some relevant topics about multiple-input multiple-output (MIMO) systems are also illustrated.

*Comprehensive wireless specific guide to algorithmic techniques
*Provides a detailed analysis of channel equalization and channel coding for wireless applications
*Unique conceptual approach focusing in single user systems
*Covers algebraic decoding, modulation techniques, channel coding and channel equalisation

 

<章節目錄>

Preface xi

List of Acronyms xiii

1 Introduction 1

1.1 Structure of a Digital Communication System 3

1.2 Plan of the Book 7

1.3 Further Reading 8

Part I MODULATION AND DETECTION

2 Wireless Channels 11

2.1 Introduction 11

2.2 Mathematical Description of SISO Wireless Channels 16

2.2.1 Input–Output Characterization of a SISO Wireless Channel 16

2.2.2 Statistical Characterization of a SISO Wireless Channel 23

2.2.3 Reduced-Complexity Statistical Models for SISO Channels 36

2.3 Mathematical Description and Modeling of MIMO Wireless Channels 44

2.3.1 Input–Output Characterization of a MIMO Wireless Channel 45

2.3.2 Statistical Characterization of a MIMO Wireless Channel 50

2.3.3 Reduced-Complexity Statistical Modeling of MIMO Channels 57

2.4 Historical Notes 57

2.4.1 Large-Scale Fading Models 58

2.4.2 Small-Scale Fading Models 60

2.5 Further Reading 64

3 Digital Modulation Techniques 65

3.1 Introduction 65

3.2 General Structure of a Digital Modulator 65

3.3 Representation of Digital Modulated Waveforms on an Orthonormal Basis 68

3.4 Bandwidth of Digital Modulations 70

3.5 Passband PAM 74

3.5.1 Signal Model 74

3.5.2 Constellation Selection 76

3.5.3 Data Block Transmission with Passband PAM Signals for Frequency-Domain Equalization 79

3.5.4 Power Spectral Density of Linear Modulations 80

3.6 Continuous Phase Modulation 86

3.6.1 Signal Model 86

3.6.2 Full-Response CPM 89

3.6.3 Partial-Response CPM 93

3.6.4 Multi-h CPM 98

3.6.5 Alternative Representations of CPM Signals 100

3.6.6 Data Block Transmission with CPM Signals for Frequency-Domain Equalization 107

3.6.7 Power Spectral Density of Continuous Phase Modulations 110

3.7 OFDM 116

3.7.1 Introduction 116

3.7.2 OFDM Signal Model 122

3.7.3 Power Spectral Density of OFDM 131

3.7.4 The PAPR Problem in OFDM 135

3.8 Lattice-Based Multidimensional Modulations 137

3.8.1 Lattices: Basic Definitions and Properties 137

3.8.2 Elementary Constructions of Lattices 144

3.9 Spectral Properties of a Digital Modulation at the Output of a Wireless Channel 146

3.10 Historical Notes 149

3.10.1 Passband PAM Signaling 149

3.10.2 CPM Signaling 151

3.10.3 MCM Signaling 152

3.10.4 Power Spectral Density of Digital Modulations 153

3.11 Further Reading 154

4 Detection of Digital Signals over Wireless Channels: Decision Rules 155

4.1 Introduction 155

4.2 Wireless Digital Communication Systems: Modeling, Receiver Architecture and Discretization of the Received Signal 156

4.2.1 General Model of a Wireless Communication System 156

4.2.2 Receiver Architectures 157

4.3 Optimum Detection in a Vector Communication System 159

4.3.1 Description of a Vector Communication System 159

4.3.2 Detection Strategies and Error Probabilities 159

4.3.3 MAP and ML Detection Strategies 162

4.3.4 Diversity Reception and Some Useful Theorems about Data Detection 167

4.4 Mathematical Models for the Receiver Vector 168

4.4.1 Extraction of a Set of Sufficient Statistics from the Received Signal 169

4.4.2 Received Vector for PAM Signaling 177

4.4.3 Received Vector for CPM Signaling 181

4.4.4 Received Vector for OFDM Signaling 184

4.5 Decision Strategies in the Presence of Channel Parameters: Optimal Metrics and Performance Bounds 188

4.5.1 Signal Model and Algorithm Classification 188

4.5.2 Detection for Transmission over of a Known Channel 189

4.5.3 Detection in the Presence of a Statistically Known Channel 198

4.5.4 Detection in the Presence of an Unknown Channel 205

4.6 Expectation–Maximization Techniques for Data Detection 207

4.6.1 The EM Algorithm 207

4.6.2 The Bayesian EM Algorithm 210

4.6.3 Initialization and Convergence of EM-Type Algorithms 213

4.6.4 Other EM Techniques 213

4.7 Historical Notes 214

4.8 Further Reading 216

5 Data-Aided Algorithms for Channel Estimation 217

5.1 Channel Estimation Techniques 218

5.1.1 Introduction 218

5.1.2 Feedforward Estimation 219

5.1.3 Recursive Estimation 222

5.1.4 The Principle of Per-Survivor Processing 227

5.2 Cram’er–Rao Bounds for Data-Aided Channel Estimation 228

5.3 Data-Aided CIR Estimation Algorithms in PATs 235

5.3.1 PAT Modeling and Optimization 235

5.3.2 A Signal Processing Perspective on PAT Techniques 238

5.4 Extensions to MIMO Channels 244

5.4.1 Channel Estimation in SC MIMO PATs 244

5.4.2 Channel Estimation in MC MIMO PATs 245

5.5 Historical Notes 245

5.6 Further Reading 247

6 Detection of Digital Signals over Wireless Channels: Channel Equalization Algorithms 249

6.1 Introduction 249

6.2 Channel Equalization of Single-Carrier Modulations: Known CIR 250

6.2.1 Channel Equalization in the Time Domain 250

6.2.2 Channel Equalization in the Frequency Domain 281

6.3 Channel Equalization of Multicarrier Modulations: Known CIR 286

6.3.1 Optimal Detection in the Absence of IBI and ICI 287

6.3.2 ICI Cancelation Techniques for Time-Varying Channels 289

6.3.3 Equalization Strategies for IBI Compensation 292

6.4 Channel Equalization of Single Carrier Modulations: Statistically Known CIR 292

6.4.1 MLSD 292

6.4.2 Other Equalization Strategies with Frequency-Flat Fading 299

6.5 Channel Equalization of Multicarrier Modulations: Statistically Known CIR 301

6.6 Joint Channel and Data Estimation: Single-Carrier Modulations 302

6.6.1 Adaptive MLSD 302

6.6.2 PSP MLSD 303

6.6.3 Adaptive MAPBD/MAPSD 305

6.6.4 Equalization Strategies Employing Reference-Based Channel Estimators with Frequency-Flat Fading 306

6.7 Joint Channel and Data Estimation: Multicarrier Modulations 307

6.7.1 Pilot-Based Equalization Techniques 308

6.7.2 Semiblind Equalization Techniques 310

6.8 Extensions to the MIMO Systems 311

6.8.1 Equalization Techniques for Single-Carrier MIMO Communications 311

6.8.2 Equalization Techniques for MIMO-OFDM Communications 314

6.9 Historical Notes 315

6.10 Further Reading 319

Part II INFORMATION THEORY AND CODING SCHEMES

7 Elements of Information Theory 323

7.1 Introduction 323

7.2 Capacity for Discrete Sources and Channels 323

7.2.1 The Discrete Memoryless Channel 324

7.2.2 The Continuous-Output Channel 325

7.2.3 Channel Capacity 326

7.3 Capacity of MIMO Fading Channels 330

7.3.1 Frequency-Flat Fading Channel 330

7.3.2 MIMO Channel Capacity 332

7.3.3 Random Channel 335

7.4 Historical Notes 337

7.5 Further Reading 338

8 An Introduction to Channel Coding Techniques 339

8.1 Basic Principles 339

8.2 Interleaving 341

8.3 Taxonomy of Channel Codes 343

8.4 Taxonomy of Coded Modulations 344

8.5 Organization of the Following Chapters 346

8.6 Historical Notes 346

8.7 Further Reading 347

9 Classical Coding Schemes 349

9.1 Block Codes 349

9.1.1 Introduction 349

9.1.2 Structure of Linear Codes over GF(q) 350

9.1.3 Properties of Linear Block Codes 352

9.1.4 Cyclic Codes 357

9.1.5 Other Relevant Linear Block Codes 369

9.1.6 Decoding Techniques for Block Codes 371

9.1.7 Error Performance 388

9.2 Convolutional Codes 390

9.2.1 Introduction 390

9.2.2 Properties of Convolutional Codes 394

9.2.3 Maximum Likelihood Decoding of Convolutional Codes 408

9.2.4 MAP Decoding of Convolutional Codes 413

9.2.5 Sequential Decoding of Convolutional Codes 419

9.2.6 Error Performance of ML Decoding of Convolutional Codes 422

9.3 Classical Concatenated Coding 432

9.3.1 Parallel Concatenation: Product Codes 432

9.3.2 Serial Concatenation: Outer RS Code 434

9.4 Historical Notes 435

9.4.1 Algebraic Coding 435

9.4.2 Probabilistic Coding 438

9.5 Further Reading 439

10 Modern Coding Schemes 441

10.1 Introduction 441

10.2 Concatenated Convolutional Codes 442

10.2.1 Parallel Concatenated Coding Schemes 442

10.2.2 Serially Concatenated Coding Schemes 444

10.2.3 Hybrid Concatenated Coding Schemes 445

10.3 Concatenated Block Codes 445

10.4 Other Modern Concatenated Coding Schemes 446

10.4.1 Repeat and Accumulate Codes 446

10.4.2 Serial Concatenation of Coding Schemes and Differential Modulations 447

10.5 Iterative Decoding Techniques for Concatenated Codes 448

10.5.1 The Turbo Principle 448

10.5.2 SiSo Decoding Algorithms 455

10.5.3 Applications 459

10.5.4 Performance Bounds 465

10.6 Low-Density Parity Check Codes 468

10.6.1 Definition and Classification 468

10.6.2 Graphic Representation of LDPC Codes via Tanner Graphs 468

10.6.3 Minimum Distance and Weight Spectrum 471

10.6.4 LDPC Code Design Approaches 472

10.6.5 Efficient Algorithms for LDPC Encoding 477

10.7 Decoding Techniques for LDPC Codes 478

10.7.1 Introduction to Decoding via Message Passing Algorithms 478

10.7.2 SPA and MSA 481

10.7.3 Technical Issues on LDPC Decoding via MP 489

10.8 Codes on Graphs 494

10.9 Historical Notes 501

10.10 Further Reading 503

11 Signal Space Codes 505

11.1 Introduction 505

11.2 Trellis Coding with Expanded Signal Sets 505

11.2.1 Code Construction 506

11.2.2 Decoding Algorithms 517

11.2.3 Error Performance 518

11.3 Bit-Interleaved Coded Modulation 520

11.3.1 Code Construction 520

11.3.2 Decoding Algorithms 521

11.3.3 Error Performance 522

11.4 Modulation Codes Based on Multilevel Coding 524

11.4.1 Code Construction for AWGN Channels 524

11.4.2 Multistage Decoder 528

11.4.3 Error Performance 529

11.4.4 Multilevel Codes for Rayleigh Flat Fading Channels 530

11.5 Space-Time Coding 531

11.5.1 ST Coding for Frequency-Flat Fading Channels 531

11.5.2 ST Coding for Frequency-Selective Fading Channels 561

11.6 Historical Notes 565

11.7 Further Reading 566

12 Combined Equalization and Decoding 567

12.1 Introduction 567

12.2 Noniterative Techniques 568

12.3 Algorithms for Combined Equalization and Decoding 571

12.3.1 Introduction 571

12.3.2 Turbo Equalization from a FG Perspective 575

12.3.3 Reduced-Complexity Techniques for SiSo Equalization 580

12.3.4 Turbo Equalization in the FD 583

12.3.5 Turbo Equalization in the Presence of an Unknown Channel 585

12.4 Extension to MIMO 586

12.5 Historical Notes 588

12.5.1 Reduced-Complexity SiSo Equalization 588

12.5.2 Error Performance and Convergence Speed in Turbo Equalization 588

12.5.3 SiSo Equalization Algorithms in the Frequency Domain 589

12.5.4 Use of Precoding 589

12.5.5 Turbo Equalization and Factor Graphs 589

12.5.6 Turbo Equalization for MIMO Systems 589

12.5.7 Related Techniques 590

12.6 Further Reading 590

Appendix A Fourier Transforms 591

Appendix B Power Spectral Density of Random Processes 593

B.1 Power Spectral Density of a Wide-Sense Stationary Random Process 593

B.2 Power Spectral Density of a Wide-Sense Cyclostationary Random Process 594

B.3 Power Spectral Density of a Bandpass Random Process 595

Appendix C Matrix Theory 597

Appendix D Signal Spaces 601

D.1 Representation of Deterministic Signals 601

D.1.1 Basic Definitions 601

D.1.2 Representation of Deterministic Signals via Orthonormal Bases 602

D.2 Representation of Random Signals via Orthonormal Bases 606

Appendix E Groups, Finite Fields and Vector Spaces 609

E.1 Groups 609

E.2 Fields 611

E.2.1 Axiomatic Definition of a Field and Finite Fields 611

E.2.2 Polynomials and Extension Fields 612

E.2.3 Other Definitions and Properties 616

E.2.4 Computation Techniques for Finite Fields 620

E.3 Vector Spaces 622

Appendix F Error Function and Related Functions 625

References 629

Index 713

商品描述(中文翻譯)

內容簡介
本書介紹了無線通信系統物理層(以及部分MAC層)中常用的各類演算法的理論基礎。重點在於單用戶系統,因此忽略了多重存取技術。此外,雖然也介紹了一些與多輸入多輸出(MIMO)系統相關的主題,但本書主要強調單輸入單輸出(SISO)系統。
*全面的無線特定演算法技術指南
*提供無線應用的通道均衡和通道編碼的詳細分析
*獨特的概念方法,專注於單用戶系統
*涵蓋代數解碼、調變技術、通道編碼和通道均衡

章節目錄
前言 xi
縮略語表 xiii
1 介紹 1
1.1 數位通信系統的結構 3
1.2 本書計劃 7
1.3 進一步閱讀 8
第一部分 調變與檢測
2 無線通道 11
2.1 介紹 11
2.2 SISO無線通道的數學描述 16
2.2.1 SISO無線通道的輸入-輸出特徵 16
2.2.2 SISO無線通道的統計特徵 23
2.2.3 SISO通道的簡化統計模型 36
2.3 MIMO無線通道的數學描述與建模 44
2.3.1 MIMO無線通道的輸入-輸出特徵 45
2.3.2 MIMO無線通道的統計特徵 50
2.3.3 MIMO通道的簡化統計建模 57
2.4 歷史註記 57
2.4.1 大尺度衰落模型 58
2.4.2 小尺度衰落模型 60
2.5 進一步閱讀 64
3 數位調變技術 65
3.1 介紹 65
3.2 數位調變器的一般結構 65
3.3 在正交基上表示數位調變波形 68
3.4 數位調變的帶寬 70
3.5 通帶PAM 74
3.5.1 信號模型 74
3.5.2 星座選擇 76
3.5.3 使用通帶PAM信號進行頻域均衡的數據塊傳輸 79
3.5.4 線性調變的功率譜密度 80
3.6 連續相位調變 86
3.6.1 信號模型 86
3.6.2 完全響應CPM 89
3.6.3 部分響應CPM 93
3.6.4 多重CPM 98
3.6.5 CPM信號的替代表示 100
3.6.6 使用CPM信號進行頻域均衡的數據塊傳輸 107
3.6.7 連續相位調變的功率譜密度 110
3.7 OFDM 116
3.7.1 介紹 116
3.7.2 OFDM信號模型 122
3.7.3 OFDM的功率譜密度 131
3.7.4 OFDM中的PAPR問題 135
3.8 基於格的多維調變 137
3.8.1 格的基本定義和性質 137
3.8.2 格的基本構造 144
3.9 無線通道輸出數位調變的頻譜特性 146
3.10 歷史註記 149
3.10.1 通帶PAM信號 149
3.10.2 CPM信號 151
3.10.3 MCM信號 152
3.10.4 數位調變的功率譜密度 153
3.11 進一步閱讀 154
4 無線通道上數位信號的檢測:決策規則 155
4.1 介紹 155
4.2 無線數位通信系統:建模、接收器架構和接收信號的離散化 156
4.2.1 無線通信系統的一般模型 156
4.2.2 接收器架構 157
4.3 向量通信系統中的最佳檢測 159
4.3.1 向量通信系統的描述 159
4.3.2 檢測策略和錯誤概率 159
4.3.3 MAP和ML檢測策略 162
4.3.4 多樣性接收及數據檢測的一些有用定理 167
4.4 接收器向量的數學模型 168
4.4.1 從接收信號中提取一組充分統計量 169
4.4.2 PAM信號的接收向量 177
4.4.3 CPM信號的接收向量 181
4.4.4 OFDM信號的接收向量 184
4.5 在通道參數存在的情況下的決策策略:最佳度量和性能界限 188
4.5.1 信號模型和演算法分類 188
4.5.2 在已知通道上進行傳輸的檢測 189
4.5.3 在統計已知通道下的檢測 198
4.5.4 在未知通道下的檢測 205
4.6 用於數據檢測的期望-最大化技術 207
4.6.1 EM演算法 207
4.6.2 貝葉斯EM演算法 210
4.6.3 EM類演算法的初始化和收斂 213
4.6.4 其他EM技術 213
4.7 歷史註記 214
4.8 進一步閱讀 216
5 用於通道估計的數據輔助演算法 217
5.1 通道估計技術 218
5.1.1 介紹 218
5.1.2 前饋估計 219
5.1.3 遞歸估計 222
5.1.4 每個生存者處理的原則 227
5.2 數據輔助通道估計的Cramér-Rao界限 228
5.3 PAT中的數據輔助CIR估計演算法 235
5.3.1 PAT建模與優化 235
5.3.2 從信號處理的角度看PAT技術 238
5.4 擴展到MIMO通道 244
5.4.1 SC MIMO PAT中的通道估計 244
5.4.2 MC MIMO PAT中的通道估計 245
5.5 歷史註記 245
5.6 進一步閱讀 247
6 無線通道上數位信號的檢測:通道均衡演算法 249
6.1 介紹 249
6.2 單載波調變的通道均衡:已知CIR 250
6.2.1 時域中的通道均衡 250
6.2.2 頻域中的通道均衡 281
6.3 多載波調變的通道均衡:已知CIR 286
6.3.1 在無IBI和ICI的情況下的最佳檢測 287
6.3.2 用於時變通道的ICI消除技術 289
6.3.3 用於IBI補償的均衡策略 292
6.4 單載波調變的通道均衡:統計已知CIR 292
6.4.1 MLSD 292
6.4.2 其他具有頻率平坦衰落的均衡策略 299
6.5 多載波調變的通道均衡:統計已知CIR 301
6.6 聯合通道和數據估計:單載波調變 302
6.6.1 自適應MLSD 302
6.6.2 PSP MLSD 303
6.6.3 自適應MAPBD/MAPSD 305
6.6.4 使用基於參考的通道估計器的均衡策略,具有頻率平坦衰落 306
6.7 聯合通道和數據估計:多載波調變 307
6.7.1 基於導頻的均衡技術 308
6.7.2 半盲均衡技術 310
6.8 擴展到MIMO系統 311
6.8.1 單載波MIMO通信的均衡技術 311
6.8.2 MIMO-OFDM通信的均衡技術 314
6.9 歷史註記 315
6.10 進一步閱讀 319
第二部分 資訊理論與編碼方案
7 資訊理論的基本元素 323
7.1 介紹 323
7.2 離散源和通道的容量 323
7.2.1 離散無記憶通道 324
7.2.2 連續輸出通道 325
7.2.3 通道容量 326
7.3 MIMO衰落通道的容量 330
7.3.1 頻率平坦衰落通道 330
7.3.2 MIMO通道容量 332
7.3.3 隨機通道 335
7.4 歷史註記 337
7.5 進一步閱讀 338
8 通道編碼技術簡介 339
8.1 基本原則 339
8.2 交錯 341
8.3 通道碼的分類 343
8.4 編碼調變的分類 344
8.5 隨後章節的組織 346
8.6 歷史註記 346
8.7 進一步閱讀 347
9 經典編碼方案 349
9.1 區塊碼 349
9.1.1 介紹 349
9.1.2 GF(q)上的線性碼結構 350
9.1.3 線性區塊碼的性質 352
9.1.4 循環碼 357
9.1.5 其他相關的線性區塊碼 369
9.1.6 區塊碼的解碼技術 371
9.1.7 錯誤性能 388
9.2 卷積碼 390
9.2.1 介紹 390
9.2.2 卷積碼的性質 394
9.2.3 卷積碼的最大似然解碼 408
9.2.4 卷積碼的MAP解碼 413
9.2.5 卷積碼的序列解碼 419
9.2.6 卷積碼的ML解碼錯誤性能 422
9.3 經典串聯編碼 432
9.3.1 並行串聯:乘積碼 432
9.3.2 串行串聯:外部RS碼 434
9.4 歷史註記 435
9.4.1 代數編碼 435
9.4.2 機率編碼 438
9.5 進一步閱讀 439
10 現代編碼方案 441
10.1 介紹 441
10.2 串聯卷積碼 442
10.2.1 並行串聯編碼方案 442
10.2.2 串行串聯編碼方案 444
10.2.3 混合串聯編碼方案 445
10.3 串聯區塊碼 445
10.4 其他現代串聯編碼方案 446
10.4.1 重複和累積碼 446
10.4.2 編碼方案和差分調變的串行串聯 447
10.5 串聯碼的迭代解碼技術 448
10.5.1 渦輪原則 448
10.5.2 SiSo解碼演算法 455

最後瀏覽商品 (20)