The Art of Error Correcting Coding, 2/e (Hardcover)
暫譯: 錯誤更正編碼的藝術,第二版 (精裝本)
Robert H. Morelos-Zaragoza
- 出版商: Wiley
- 出版日期: 2006-08-21
- 售價: $1,200
- 貴賓價: 9.8 折 $1,176
- 語言: 英文
- 頁數: 278
- 裝訂: Hardcover
- ISBN: 0470015586
- ISBN-13: 9780470015582
無法訂購
買這商品的人也買了...
-
$2,920$2,774 -
$540$486 -
$2,550$2,423 -
$1,068Introduction to Cryptography with Coding Theory, 2/e (Paperback)
-
$880$695 -
$1,976Error Correction Coding : Mathematical Methods and Algorithms
-
$650$514 -
$520$406 -
$720$569 -
$450$405 -
$380$342 -
$2,050$1,948 -
$720$612 -
$1,638Cross-Platform Development in C++: Building Mac OS X, Linux, and Windows Applications (Paperback)
-
$1,640Software Testing: A Craftsman's Approach, 3/e (Hardcover)
-
$680$537 -
$490$417 -
$580$458 -
$880$695 -
$4,290$4,076 -
$350$277 -
$400$380 -
$349$276 -
$320$250 -
$4,440$4,218
商品描述
Description
Building on the success of the first edition, which offered a practical introductory approach to the techniques of error concealment, this book, now fully revised and updated, provides a comprehensive treatment of the subject and includes a wealth of additional features. The Art of Error Correcting Coding, Second Edition explores intermediate and advanced level concepts as well as those which will appeal to the novice.
All key topics are discussed, including Reed-Solomon codes, Viterbi decoding, soft-output decoding algorithms, MAP, log-MAP and MAX-log-MAP. Reliability-based algorithms GMD and Chase are examined, as are turbo codes, both serially and parallel concatenated, as well as low-density parity-check (LDPC) codes and their iterative decoders.
- Features additional problems at the end of each chapter and an instructor’s solutions manual
- Updated companion website offers new C/C ++programs and MATLAB scripts, to help with the understanding and implementation of basic ECC techniques
- Easy to follow examples illustrate the fundamental concepts of error correcting codes
- Basic analysis tools are provided throughout to help in the assessment of the error performance block and convolutional codes of a particular error correcting coding (ECC) scheme for a selection of the basic channel models
This edition provides an essential resource to engineers, computer scientists and graduate students alike for understanding and applying ECC techniques in the transmission and storage of digital information.
Table of Contents
Preface.
Foreword.
The ECC web site.
1. Introduction.
1.1 Error correcting coding: Basic concepts.
1.1.1 Block codes and convolutional codes.
1.1.2 Hamming distance, Hamming spheres and error correcting capability.
1.2 Linear block codes.
1.2.1 Generator and parity-check matrices.
1.2.2 The weight is the distance.
1.3 Encoding and decoding of linear block codes.
1.3.1 Encoding with G and H.
1.3.2 Standard array decoding.
1.3.3 Hamming spheres, decoding regions and the standard array.
1.4 Weight distribution and error performance.
1.4.1 Weight distribution and undetected error probability over a BSC.
1.4.2 Performance bounds over BSC, AWGN and fading channels.
1.5 General structure of a hard-decision decoder of linear codes.
Problems.
2. Hamming, Golay and Reed–Muller codes.
2.1 Hamming codes.
2.1.1 Encoding and decoding procedures.
2.2 The binary Golay code.
2.2.1 Encoding.
2.2.2 Decoding.
2.2.3 Arithmetic decoding of the extended (24, 12, 8) Golay code.
2.3 Binary Reed–Muller codes.
2.3.1 Boolean polynomials and RM codes.
2.3.2 Finite geometries and majority-logic decoding.
Problems.
3. Binary cyclic codes and BCH codes.
3.1 Binary cyclic codes.
3.1.1 Generator and parity-check polynomials.
3.1.2 The generator polynomial.
3.1.3 Encoding and decoding of binary cyclic codes.
3.1.4 The parity-check polynomial.
3.1.5 Shortened cyclic codes and CRC codes.
3.1.6 Fire codes.
3.2 General decoding of cyclic codes.
3.2.1 GF(2m) arithmetic.
3.3 Binary BCH codes.
3.3.1 BCH bound.
3.4 Polynomial codes.
3.5 Decoding of binary BCH codes.
3.5.1 General decoding algorithm for BCH codes.
3.5.2 The Berlekamp–Massey algorithm (BMA).
3.5.3 PGZ decoder.
3.5.4 Euclidean algorithm.
3.5.5 Chien search and error correction.
3.5.6 Errors-and-erasures decoding.
3.6 Weight distribution and performance bounds.
3.6.1 Error performance evaluation.
Problems.
4. Nonbinary BCH codes: Reed–Solomon codes.
4.1 RS codes as polynomial codes.
4.2 From binary BCH to RS codes.
4.3 Decoding RS codes.
4.3.1 Remarks on decoding algorithms.
4.3.2 Errors-and-erasures decoding.
4.4 Weight distribution.
Problems.
5. Binary convolutional codes.
5.1 Basic structure.
5.1.1 Recursive systematic convolutional codes.
5.1.2 Free distance.
5.2 Connections with block codes.
5.2.1 Zero-tail construction.
5.2.2 Direct-truncation construction.
5.2.3 Tail-biting construction.
5.2.4 Weight distributions.
5.3 Weight enumeration.
5.4 Performance bounds.
5.5 Decoding: Viterbi algorithm with Hamming metrics.
5.5.1 Maximum-likelihood decoding and metrics.
5.5.2 The Viterbi algorithm.
5.5.3 Implementation issues.
5.6 Punctured convolutional codes.
5.6.1 Implementation issues related to punctured convolutional codes.
5.6.2 RCPC codes.
Problems.
6. Modifying and combining codes.
6.1 Modifying codes.
6.1.1 Shortening.
6.1.2 Extending.
6.1.3 Puncturing.
6.1.4 Augmenting, expurgating and lengthening.
6.2 Combining codes.
6.2.1 Time sharing of codes.
6.2.2 Direct sums of codes.
6.2.3 The |u|u + v|-construction and related techniques.
6.2.4 Products of codes.
6.2.5 Concatenated codes.
6.2.6 Generalized concatenated codes.
7. Soft-decision decoding.
7.1 Binary transmission over AWGN channels.
7.2 Viterbi algorithm with Euclidean metric.
7.3 Decoding binary linear block codes with a trellis.
7.4 The Chase algorithm.
7.5 Ordered statistics decoding.
7.6 Generalized minimum distance decoding.
7.6.1 Sufficient conditions for optimality.
7.7 List decoding.
7.8 Soft-output algorithms.
7.8.1 Soft-output Viterbi algorithm.
7.8.2 Maximum-a posteriori (MAP) algorithm.
7.8.3 Log-MAP algorithm.
7.8.4 Max-Log-MAP algorithm.
7.8.5 Soft-output OSD algorithm.
Problems.
8. Iteratively decodable codes.
8.1 Iterative decoding.
8.2 Product codes.
8.2.1 Parallel concatenation: Turbo codes.
8.2.2 Serial concatenation.
8.2.3 Block product codes.
8.3 Low-density parity-check codes.
8.3.1 Tanner graphs.
8.3.2 Iterative hard-decision decoding: The bit-flip algorithm.
8.3.3 Iterative probabilistic decoding: Belief propagation.
Problems.
9. Combining codes and digital modulation.
9.1 Motivation.
9.1.1 Examples of signal sets.
9.1.2 Coded modulation.
9.1.3 Distance considerations.
9.2 Trellis-coded modulation (TCM).
9.2.1 Set partitioning and trellis mapping.
9.2.2 Maximum-likelihood.
9.2.3 Distance considerations and error performance.
9.2.4 Pragmatic TCM and two-stage decoding.
9.3 Multilevel coded modulation.
9.3.1 Constructions and multistage decoding.
9.3.2 Unequal error protection with MCM.
9.4 Bit-interleaved coded modulation.
9.4.1 Gray mapping.
9.4.2 Metric generation: De-mapping.
9.4.3 Interleaving.
9.5 Turbo trellis-coded modulation.
9.5.1 Pragmatic turbo TCM.
9.5.2 Turbo TCM with symbol interleaving.
9.5.3 Turbo TCM with bit interleaving.
Problems.
Appendix A: Weight distributions of extended BCH codes.
A.1 Length 8.
A.2 Length 16.
A.3 Length 32.
A.4 Length 64.
A.5 Length 128.
Bibliography.
Index.
商品描述(中文翻譯)
描述
基於第一版的成功,該版提供了一種實用的錯誤隱藏技術入門方法,這本書現在已全面修訂和更新,提供了該主題的綜合處理,並包含大量額外的特性。《錯誤更正編碼的藝術,第二版》探討了中級和高級概念,以及對初學者有吸引力的內容。
所有關鍵主題均有討論,包括 Reed-Solomon 代碼、Viterbi 解碼、軟輸出解碼算法、MAP、log-MAP 和 MAX-log-MAP。還檢查了基於可靠性的算法 GMD 和 Chase,以及串聯和並聯的 Turbo 代碼,以及低密度奇偶檢查 (LDPC) 代碼及其迭代解碼器。
- 每章末尾提供額外的問題和教師解答手冊
- 更新的伴隨網站提供新的 C/C++ 程式和 MATLAB 腳本,以幫助理解和實現基本的 ECC 技術
- 易於理解的範例說明了錯誤更正代碼的基本概念
- 提供基本分析工具,以幫助評估特定錯誤更正編碼 (ECC) 計劃的區塊和卷積代碼的錯誤性能,適用於基本通道模型的選擇
本版為工程師、計算機科學家和研究生提供了理解和應用 ECC 技術於數位信息傳輸和存儲的基本資源。
目錄
前言
序言
ECC 網站
1. 介紹
1.1 錯誤更正編碼:基本概念
1.1.1 區塊代碼和卷積代碼
1.1.2 哈明距離、哈明球和錯誤更正能力
1.2 線性區塊代碼
1.2.1 生成器和奇偶檢查矩陣
1.2.2 重量即距離
1.3 線性區塊代碼的編碼和解碼
1.3.1 使用 G 和 H 進行編碼
1.3.2 標準陣列解碼
1.3.3 哈明球、解碼區域和標準陣列
1.4 重量分佈和錯誤性能
1.4.1 重量分佈和在 BSC 上未檢測到的錯誤概率
1.4.2 在 BSC、AWGN 和衰落通道上的性能界限
1.5 線性代碼的硬決策解碼器的一般結構
問題
2. 哈明、戈萊和 Reed–Muller 代碼
2.1 哈明代碼
2.1.1 編碼和解碼程序
2.2 二進制戈萊代碼
2.2.1 編碼
2.2.2 解碼
2.2.3 擴展 (24, 12, 8) 戈萊代碼的算術解碼
2.3 二進制 Reed–Muller 代碼
2.3.1 布爾多項式和 RM 代碼
2.3.2 有限幾何和多數邏輯解碼
問題
3. 二進制循環代碼和 BCH 代碼
3.1 二進制循環代碼
3.1.1 生成器和奇偶檢查多項式
3.1.2 生成多項式
3.1.3 編碼和解碼