相關主題
商品描述
From theory to techniques, the first all-in-one resource for EIS
There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications.
-
Explains the following fundamental approaches for developing evolving intelligent systems (EIS):
- the Hierarchical Prioritized Structure
-
the Participatory Learning Paradigm
-
the Evolving Takagi-Sugeno fuzzy systems (eTS+)
-
the evolving clustering algorithm that stems from the well-known Gustafson-Kessel offline clustering algorithm
-
Emphasizes the importance and increased interest in online processing of data streams
-
Outlines the general strategy of using the fuzzy dynamic clustering as a foundation for evolvable information granulation
-
Presents a methodology for developing robust and interpretable evolving fuzzy rule-based systems
-
Introduces an integrated approach to incremental (real-time) feature extraction and classification
-
Proposes a study on the stability of evolving neuro-fuzzy recurrent networks
-
Details methodologies for evolving clustering and classification
-
Reveals different applications of EIS to address real problems in areas of:
-
evolving inferential sensors in chemical and petrochemical industry
-
learning and recognition in robotics
-
-
Features downloadable software resources
Evolving Intelligent Systems is the one-stop reference guide for both theoretical and practical issues for computer scientists, engineers, researchers, applied mathematicians, machine learning and data mining experts, graduate students, and professionals.
商品描述(中文翻譯)
從理論到技術,首本全方位的EIS資源
在先進的製程工業、國防、互聯網和通信(VoIP)應用中,對智能而又適應/演進系統有明顯需求。《演進智能系統》是第一本自成一體的專書,全面介紹了這一新興概念,從系統方法論到案例研究再到工業應用。本書由領先的世界專家撰寫,探討了這一新興研究領域的進展、趨勢和重大成就,強調了新穎理論成果和解決方案與實際應用之間的平衡。
- 解釋了開發演進智能系統(EIS)的以下基本方法:
- 分層優先結構
- 參與式學習範式
- 演進高木-菅野模糊系統(eTS+)
- 源於著名的Gustafson-Kessel離線聚類算法的演進聚類算法
- 強調了對數據流的在線處理的重要性和日益增加的興趣
- 概述了使用模糊動態聚類作為可演進信息粒度基礎的一般策略
- 提出了一種開發強健且可解釋的演進模糊規則系統的方法論
- 引入了一種增量(實時)特徵提取和分類的綜合方法
- 提出了一項關於演進神經模糊循環網絡穩定性的研究
- 詳細介紹了演進聚類和分類的方法論
- 揭示了EIS在以下領域解決實際問題的不同應用:
- 化學和石油化工行業中的演進推理傳感器
- 機器人學中的學習和識別
- 提供可下載的軟件資源
《演進智能系統》是計算機科學家、工程師、研究人員、應用數學家、機器學習和數據挖掘專家、研究生和專業人士的一站式參考指南,涵蓋了理論和實踐問題。