Classification Analysis of DNA Microarrays (Hardcover)
暫譯: DNA 微陣列的分類分析 (精裝版)
Leif E. Peterson
- 出版商: Wiley
- 出版日期: 2013-04-22
- 售價: $2,998
- 貴賓價: 9.5 折 $2,848
- 語言: 英文
- 頁數: 736
- 裝訂: Hardcover
- ISBN: 0470170816
- ISBN-13: 9780470170816
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
網路安全與密碼學 (Cryptography and Network Security)$580$551 -
計算機組織與設計 (Computer Organization and Design: The Hardware/Software Interface, 4/e)$900$855 -
Android 4.X 手機/平板電腦程式設計入門、應用到精通, 2/e (適用 Android 1.X~4.X)$520$411 -
Elementary Information Security (Paperback)$1,190$1,166 -
ASP.NET 4.5 專題實務 [I]-C# 入門實戰篇$780$616 -
最簡單的互動設計 Arduino一試就上手, 2/e$450$356 -
行動介面設計模式 (Designing Mobile Interfaces)$880$695 -
行動介面設計模式圖鑑-以視覺範例學習有效的介面設計模式 (Mobile Design Pattern Gallery: UI Patterns for Mobile Applications)$580$458 -
3ds Max 室內設計美學 (範例適用2013/2012/2011/2010,附基礎功能影音教學/範例檔)$480$379 -
HTML5 & CSS3 網頁程式設計$520$411 -
An Introduction to the Analysis of Algorithms, 2/e (Hardcover)$1,180$1,156 -
無瑕的程式碼-敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
超圖解 Arduino 互動設計入門 (附 Arduino UNO R3 開發板)$1,130$961 -
Google! Android 手機應用程式設計入門, 5/e$520$411 -
Android 應用程式開發與設計實務$590$460 -
Raspberry Pi 使用者手冊 (Raspberry Pi User Guide)$580$522 -
雲端創業術:使用 Google Apps 服務開店的九堂課(雲端硬碟、協作平台、日曆、手機App、Gmail、Hangouts視訊會議、Youtube影音、Picasa相簿可以這樣用)$380$300 -
Effective JavaScript 中文版 | 駕馭 JavaScript 的 68 個具體作法 (Effective JavaScript: 68 Specific Ways to Harness the Power of JavaScript)$450$356 -
提升程式設計的解題思考力-國際演算法程式設計競賽訓練指南$500$395 -
深入淺出 HTML and CSS, 2/e (Head First HTML and CSS, 2/e)$880$695 -
眼球運動視力鍛鍊-只要每天 5 分鐘,不可思議的眼肌鍛鍊法$349$297 -
ASP.NET 4.5 專題實務 [II]-範例應用與 4.5 新功能【VB/C# 雙語法】$820$648 -
無瑕的程式碼 番外篇-專業程式設計師的生存之道 (The Clean Coder: A Code of Conduct for Professional Programmers)
$360$281 -
Bad Data 技術手冊 (Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work)$480$379 -
Android 手機‧平板救急手冊 (HTC‧Samsung‧Sony 各種手機平板電腦廠牌全適用)$320$272
相關主題
商品描述
Wide coverage of traditional unsupervised and supervised methods and newer contemporary approaches that help researchers handle the rapid growth of classification methods in DNA microarray studies
Proliferating classification methods in DNA microarray studies have resulted in a body of information scattered throughout literature, conference proceedings, and elsewhere. This book unites many of these classification methods in a single volume. In addition to traditional statistical methods, it covers newer machine-learning approaches such as fuzzy methods, artificial neural networks, evolutionary-based genetic algorithms, support vector machines, swarm intelligence involving particle swarm optimization, and more.
Classification Analysis of DNA Microarrays provides highly detailed pseudo-code and rich, graphical programming features, plus ready-to-run source code. Along with primary methods that include traditional and contemporary classification, it offers supplementary tools and data preparation routines for standardization and fuzzification; dimensional reduction via crisp and fuzzy c-means, PCA, and non-linear manifold learning; and computational linguistics via text analytics and n-gram analysis, recursive feature extraction during ANN, kernel-based methods, ensemble classifier fusion.
This powerful new resource:
- Provides information on the use of classification analysis for DNA microarrays used for large-scale high-throughput transcriptional studies
- Serves as a historical repository of general use supervised classification methods as well as newer contemporary methods
- Brings the reader quickly up to speed on the various classification methods by implementing the programming pseudo-code and source code provided in the book
- Describes implementation methods that help shorten discovery times
Classification Analysis of DNA Microarrays is useful for professionals and graduate students in computer science, bioinformatics, biostatistics, systems biology, and many related fields.
商品描述(中文翻譯)
廣泛涵蓋傳統的無監督和監督方法以及幫助研究人員應對DNA微陣列研究中分類方法快速增長的當代新方法
在DNA微陣列研究中,分類方法的激增導致相關資訊散佈在文獻、會議論文及其他地方。本書將許多這些分類方法整合在一本書中。除了傳統的統計方法外,還涵蓋了新的機器學習方法,如模糊方法、人工神經網絡、基於進化的遺傳算法、支持向量機、涉及粒子群優化的群體智慧等。
DNA微陣列的分類分析提供了高度詳細的偽代碼和豐富的圖形編程特性,以及可直接運行的源代碼。除了包括傳統和當代分類的主要方法外,還提供了標準化和模糊化的輔助工具和數據準備例程;通過清晰和模糊c均值、主成分分析(PCA)和非線性流形學習進行的維度縮減;以及通過文本分析和n-gram分析、在ANN中的遞歸特徵提取、基於核的方法、集成分類器融合的計算語言學。
這個強大的新資源:
- 提供有關用於大規模高通量轉錄研究的DNA微陣列的分類分析使用資訊
- 作為一般用途的監督分類方法以及較新當代方法的歷史資料庫
- 通過實現書中提供的編程偽代碼和源代碼,幫助讀者迅速掌握各種分類方法
- 描述幫助縮短發現時間的實施方法
DNA微陣列的分類分析對計算機科學、生物資訊學、生物統計學、系統生物學及許多相關領域的專業人士和研究生都非常有用。
