Bayesian Models for Categorical Data
暫譯: 類別資料的貝葉斯模型

Peter Congdon

  • 出版商: Wiley
  • 出版日期: 2005-07-11
  • 售價: $5,250
  • 貴賓價: 9.5$4,988
  • 語言: 英文
  • 頁數: 466
  • ISBN: 0470092378
  • ISBN-13: 9780470092378
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes.
* Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data).
* Considers missing data models techniques and non-standard models (ZIP and negative binomial).
* Evaluates time series and spatio-temporal models for discrete data.
* Features discussion of univariate and multivariate techniques.
* Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site.
The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.

商品描述(中文翻譯)

貝葉斯方法在數據分析中的應用已在應用統計學、心理學、經濟學和醫學科學等多個領域顯著增長。《貝葉斯分類數據方法》旨在揭開現代貝葉斯方法的神秘面紗,使其對學生和研究人員都能夠輕鬆理解。本書強調統計計算和應用數據分析的使用,提供了對分類結果的貝葉斯方法的全面介紹。
* 回顧了針對分類結果(包括二元、計數和多項數據)的最新貝葉斯方法。
* 考慮缺失數據模型技術和非標準模型(ZIP和負二項分佈)。
* 評估離散數據的時間序列和時空模型。
* 特別討論單變量和多變量技術。
* 提供一組可下載的實作範例,並附有文檔化的WinBUGS代碼,這些範例可從ftp網站獲得。
作者之前的兩本暢銷書提供了貝葉斯模型理論和應用的全面介紹。《貝葉斯分類數據模型》在此基礎上進一步發展,專注於分類或離散數據的應用,這是最常見的數據類型之一。作者清晰且合邏輯的方式使本書對廣泛的學生和從業者都能夠理解,包括那些在醫學、社會學、心理學和流行病學中處理分類數據的人士。