Symbolic Data Analysis: Conceptual Statistics and Data Mining
暫譯: 符號數據分析:概念統計與數據挖掘

Lynne Billard, Edwin Diday

買這商品的人也買了...

商品描述

Description

With the advent of computers, very large datasets have become routine. Standard statistical methods don’t have the power or flexibility to analyse these efficiently, and extract the required knowledge. An alternative approach is to summarize a large dataset in such a way that the resulting summary dataset is of a manageable size and yet retains as much of the knowledge in the original dataset as possible. One consequence of this is that the data may no longer be formatted as single values, but be represented by lists, intervals, distributions, etc. The summarized data have their own internal structure, which must be taken into account in any analysis.

This text presents a unified account of symbolic data, how they arise, and how they are structured. The reader is introduced to symbolic analytic methods described in the consistent statistical framework required to carry out such a summary and subsequent analysis.

  • Presents a detailed overview of the methods and applications of symbolic data analysis.
  • Includes numerous real examples, taken from a variety of application areas, ranging from health and social sciences, to economics and computing.
  • Features exercises at the end of each chapter, enabling the reader to develop their understanding of the theory.
  • Provides a supplementary website featuring links to download the SODAS software developed exclusively for symbolic data analysis, data sets, and further material.

Primarily aimed at statisticians and data analysts, Symbolic Data Analysis is also ideal for scientists working on problems involving large volumes of data from a range of disciplines, including computer science, health and the social sciences. There is also much of use to graduate students of statistical data analysis courses.

 

Table of Contents

1. Introduction.

References.

2. Symbolic Data.

2.1 Symbolic and Classical Data.

2.1.1 Types of Data.

2.1.2 Dependencies in the Data.

2.2 Categories, Concepts and Symbolic Objects.

2.2.1 Preliminaries.

2.2.2 Descriptions, Assertions, Extents.

2.2.3 Concepts of Concepts.

2.2.4 Some Philosophical Aspects.

2.2.5 Fuzzy, Imprecise, and Conjunctive Data.

2.3 Comparison of Symbolic and Classical Analysis.

Exercises.

References.

Tables.

Figures.

3. Basic Descriptive Statistics: One Variate.

3.1 Some Preliminaries.

3.2 Multi-valued Variables.

3.3 Interval-valued Variables.

3.4 Multi-valued Modal variables.

3.5 Interval-valued Modal Variables.

Exercises.

References.

Tables.

Figures.

4. Descriptive Statistics: Two or More Variates.

4.1 Multi-valued Variables.

4.2 Interval-valued Variables.

4.3 Modal Multi-valued Variables.

4.4 Modal Interval-valued Variables.

4.5 Baseball Interval-valued Dataset.

4.5.1 The Data: Actual and Virtual Datasets.

4.5.2 Joint Histograms.

4.5.3 Guiding Principles.

4.6 Measures of Dependence.

4.6.1 Moment Dependence.

4.6.2 Spearman’s rho and copulas.

Exercises.

References.

Tables.

Figures.

5. Principal Component Analysis.

5.1 Vertices Method.

5.2 Centers Method.

5.3 Comparison of the Methods.

Exercises.

References.

Tables.

Figures.

6. Regression Analysis.

6.1 Classical Multiple Regression Model.

6.2 Multi-valued Variables.

6.2.1 Single Dependent Variable.

6.2.2 Multi-valued Dependent Variable.

6.3 Interval-valued Variables.

6.4 Histogram-valued Variables.

6.5 Taxonomy Variables.

6.6 Hierarchical Variables.

Exercises.

References.

Tables.

Figures.

7. Cluster Analysis.

7.1 Dissimilarity and Distance Measures.

7.1.1 Basic Definitions.

7.1.2 Multi-valued Variables.

7.1.3 Interval-valued Variables.

7.1.4 Mixed-valued Variables.

7.2 Clustering Structures.

7.2.1 Types of Clusters: Definitions.

7.2.2 Construction of Clusters: Building Algorithms.

7.3 Partitions.

7.4 Hierarchy-Divisive Clustering.

7.4.1 Some Basics.

7.4.2 Multi-valued Variables.

7.4.3 Interval-valued Variables.

7.5 Hierarchy-Pyramid Clusters.

7.5.1 Some Basics.

7.5.2 Comparison of Hierarchy and Pyramid Structures.

7.5.3 Construction of Pyramids.

Exercises.

References.

Tables.

Figures.

Data Index.

Author Index.

Subject Index.

商品描述(中文翻譯)

**描述**

隨著電腦的出現,非常大的數據集已經變得司空見慣。標準的統計方法無法有效地分析這些數據並提取所需的知識。另一種方法是以某種方式總結大型數據集,使得結果的摘要數據集大小可控,並且儘可能保留原始數據集中的知識。這樣的結果是,數據可能不再以單一值的格式呈現,而是以列表、區間、分佈等形式表示。摘要數據具有其內部結構,這在任何分析中都必須考慮。

本書提供了符號數據的統一說明,介紹了它們的產生方式及其結構。讀者將接觸到符號分析方法,這些方法在進行此類摘要和隨後分析時所需的一致統計框架中進行描述。

- 提供符號數據分析方法和應用的詳細概述。
- 包含來自各種應用領域的眾多實際例子,涵蓋健康、社會科學、經濟學和計算等領域。
- 每章末尾設有練習,幫助讀者加深對理論的理解。
- 提供補充網站,包含下載專為符號數據分析開發的 SODAS 軟體、數據集及其他資料的連結。

本書主要針對統計學家和數據分析師,但對於處理來自各個學科的大量數據問題的科學家來說也是理想的選擇,包括計算機科學、健康和社會科學等領域。對於統計數據分析課程的研究生來說,也有很多有用的內容。

**目錄**

1. 介紹
參考文獻
2. 符號數據
2.1 符號數據與經典數據
2.1.1 數據類型
2.1.2 數據中的依賴性
2.2 類別、概念和符號對象
2.2.1 基礎知識
2.2.2 描述、斷言、範圍
2.2.3 概念的概念
2.2.4 一些哲學方面
2.2.5 模糊、不精確和聯合數據
2.3 符號分析與經典分析的比較
練習
參考文獻
表格
圖形
3. 基本描述性統計:單變量
3.1 一些基礎知識
3.2 多值變量
3.3 區間值變量
3.4 多值模態變量
3.5 區間值模態變量
練習
參考文獻
表格
圖形
4. 描述性統計:兩個或更多變量
4.1 多值變量
4.2 區間值變量
4.3 模態多值變量
4.4 模態區間值變量
4.5 棒球區間值數據集
4.5.1 數據:實際和虛擬數據集
4.5.2 聯合直方圖
4.5.3 指導原則
4.6 依賴性度量
4.6.1 矩依賴性
4.6.2 斯皮爾曼的 rho 和聯合分布
練習
參考文獻
表格
圖形
5. 主成分分析
5.1 頂點方法
5.2 中心方法
5.3 方法比較
練習
參考文獻
表格
圖形
6. 迴歸分析
6.1 經典多重迴歸模型
6.2 多值變量
6.2.1 單一依賴變量
6.2.2 多值依賴變量
6.3 區間值變量
6.4 直方圖值變量
6.5 分類變量
6.6 階層變量
練習
參考文獻
表格
圖形
7. 聚類分析
7.1 不相似性和距離度量
7.1.1 基本定義
7.1.2 多值變量
7.1.3 區間值變量
7.1.4 混合值變量
7.2 聚類結構
7.2.1 聚類類型:定義
7.2.2 聚類的構建:建構算法
7.3 分區
7.4 階層-劃分聚類
7.4.1 一些基礎知識
7.4.2 多值變量
7.4.3 區間值變量
7.5 階層-金字塔聚類
7.5.1 一些基礎知識
7.5.2 階層與金字塔結構的比較
7.5.3 金字塔的構建
練習
參考文獻
表格
圖形
數據索引
作者索引
主題索引