Remote Sensing with Polarimetric Radar (Hardcover)
暫譯: 極化雷達遙感技術 (精裝版)

Harold Mott

  • 出版商: Wiley
  • 出版日期: 2007-01-01
  • 售價: $1,500
  • 貴賓價: 9.8$1,470
  • 語言: 英文
  • 頁數: 309
  • 裝訂: Hardcover
  • ISBN: 0470074760
  • ISBN-13: 9780470074763
  • 相關分類: 物理學 Physics
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Description

Discover the principles and techniques of remote sensing with polarimetric radar

This book presents the principles central to understanding polarized wave transmission, scattering, and reception in communication systems and polarimetric and non-polarimetric radar. Readers gain new insight into the methods for remotely gathering data about the earth's surface and atmosphere with polarimetric synthetic-aperture radar and polarimetric interferometry, including the changes that take place with seasons, floods, earthquakes, and other natural phenomena. In particular, with the book's focus on polarimetric radars, readers discover how to exploit the many special features of these systems, which provide the maximum amount of information that can be obtained remotely with radar.

Introductory-level coverage of electromagnetic wave propagation, antennas, radar and synthetic aperture radar, probability and random processes, and radar interferometry serves as a foundation for advancing to more complex material. A more advanced mathematical and technical treatment enables readers to fully grasp polarized wave transmission, propagation, and reception in communication systems and polarimetric-radar remote sensing. Readers will discover much new material in this text, including:

  • Distinguishing between coherently-measured and incoherently-measured target matrices for power, recognizing that the two matrix types are not equivalent in representing targets
  • Removing unpolarized components from the scattered wave and deriving a target matrix for classification from the resulting coherently-scattered wave
  • Selecting an antenna polarization to maximize the contrast between desired and undesired depolarizing targets

Problems ranging in complexity from introductory to challenging are presented throughout the text.

Engineers will find this an ideal reference to help them fully utilize the powerful capabilities of polarimetric radar. It will also help agronomists, geographers, meteorologists, and other scientists who use remotely obtained data about the earth to evaluate procedures and better interpret the data. The book can also be tailored to both undergraduate and graduate courses in remote sensing, and recommendations are given for text material suitable for such courses.

Table of Contents

PREFACE.

ACKNOWLEDGMENTS.

1. ELECTROMAGNETIC WAVES.

1.1. The Time-Invariant Maxwell Equations.

1.2. The Electromagnetic Traveling Wave.

1.3. Power Density.

1.4. The Polarization Ellipse.

1.5. Polarization Vector and Polarization Ratio.

1.6. Circular Wave Components.

1.7. Change of Polarization Basis.

1.8. Ellipse Characteristics in Terms of P and Q.

1.9. Coherency and Stokes Vectors.

1.10. The Poincar´e Sphere.

References.

Problems.

2. ANTENNAS.

2.1. Elements of the Antenna System.

2.2. The Vector Potentials.

2.3. Solutions for the Vector Potentials.

2.4. Far-Zone Fields.

2.5. Radiation Pattern.

2.6. Gain and Directivity.

2.7. The Receiving Antenna.

2.8. Transmission Between Antennas.

2.9. Antenna Arrays.

2.10. Effective Length of an Antenna.

2.11. Reception of Completely Polarized Waves.

2.12. Gain, Effective Area, and Radiation Resistance.

2.13. Maximum Received Power.

2.14. Polarization Efficiency.

2.15. The Modified Friis Transmission Equation.

2.16. Alignment of Antennas.

References.

Problems.

3. COHERENTLY SCATTERING TARGETS.

3.1. Radar Targets.

3.2. The Jones Matrix.

3.3. The Sinclair Matrix.

3.4. Matrices With Relative Phase.

3.5. FSA–BSA Conventions.

3.6. Relationship Between Jones and Sinclair Matrices.

3.7. Scattering with Circular Wave Components.

3.8. Backscattering.

3.9. Polarization Ratio of the Scattered Wave.

3.10. Change of Polarization Basis: The Scattering Matrix.

3.11. Polarizations for Maximum and Minimum Power.

3.12. The Polarization Fork.

3.13. Nonaligned Coordinate Systems.

3.14. Determination of Scattering Parameters.

References.

Problems.

4. AN INTRODUCTION TO RADAR.

4.1. Pulse Radar.

4.2. CW Radar.

4.3. Directional Properties of Radar Measurements.

4.4. Resolution.

4.5. Imaging Radar.

4.6. The Traditional Radar Equation.

4.7. The Polarimetric Radar Equation.

4.8. A Polarimetric Radar.

4.9. Noise.

References.

Problems.

5. SYNTHETIC APERTURE RADAR.

5.1. Creating a Terrain Map.

5.2. Range Resolution.

5.3. Azimuth Resolution.

5.4. Geometric Factors.

5.5. Polarimetric SAR.

5.6. SAR Errors.

5.7. Height Measurement.

5.8. Polarimetric Interferometry.

5.9. Phase Unwrapping.

References.

Problems.

6. PARTIALLY POLARIZED WAVES.

6.1. Representation of the Fields.

6.2. Representation of Partially Polarized Waves.

6.3. Reception of Partially Polarized Waves.

References.

Problems.

7. SCATTERING BY DEPOLARIZING TARGETS.

7.1. Targets.

7.2. Averaging the Sinclair Matrix.

7.3. The Kronecker-Product Matrices.

7.4. Matrices for a Depolarizing Target: Coherent Measurement.

7.5. Incoherently Measured Target Matrices.

7.6. Matrix Properties and Relationships.

7.7. Modified Matrices.

7.8. Names.

7.9. Additional Target Information.

7.10. Target Covariance and Coherency Matrices.

7.11. A Scattering Matrix with Circular Components.

7.12. The Graves Power Density Matrix.

7.13. Measurement Considerations.

7.14. Degree of Polarization and Polarimetric Entropy.

7.15. Variance of Power.

7.16. Summary of Power Equations and Matrix Relationships.

References.

Problems.

8. OPTIMAL POLARIZATIONS FOR RADAR.

8.1. Antenna Selection Criteria.

8.2. Lagrange Multipliers.

A. COHERENTLY SCATTERING TARGETS.

8.3. Maximum Power.

8.4. Power Contrast: Backscattering.

B. DEPOLARIZING TARGETS.

8.5. Iterative Procedure for Maximizing Power Contrast.

8.6. The Backscattering Covariance Matrix.

8.7. The Bistatic Covariance Matrix.

8.8. Maximizing Power Contrast by Matrix Decomposition.

8.9. Optimization with the Graves Matrix.

References.

Problems.

9. CLASSIFICATION OF TARGETS.

A. CLASSIFICATION CONCEPTS.

9.1. Representation and Classification of Targets.

9.2. Bayes Decision Rule.

9.3. The Neyman-Pearson Decision Rule.

9.4. Bayes Error Bounds.

9.5. Estimation of Parameters from Data.

9.6. Nonparametric Classification.

B. CLASSIFICATION BY MATRIX DECOMPOSITION.

9.7. Coherent Decomposition.

9.8. Decomposition of Power-Type Matrices.

C. REMOVAL OF UNPOLARIZED SCATTERING.

9.9. Decomposition of the D Matrix.

9.10. Polarized Clutter.

9.11. A Similar Decomposition.

9.12. Polarimetric Similarity Classification.

References.

Problems.

APPENDIX A. FADING AND SPECKLE.

Reference.

APPENDIX B. PROBABILITY AND RANDOM PROCESSES.

B.1. Probability.

B.2. Random Variables.

B.3. Random Vectors.

B.4. Probability Density Functions in Remote Sensing.

B.5. Random Processes.

References.

APPENDIX C. THE KENNAUGH MATRIX.

APPENDIX D. BAYES ERROR BOUNDS.

References.

INDEX.

商品描述(中文翻譯)

**描述**

本書介紹了極化雷達的遙感原理和技術。這本書呈現了理解通信系統中極化波傳輸、散射和接收的核心原理,以及極化和非極化雷達的相關知識。讀者將獲得有關使用極化合成孔徑雷達和極化干涉測量遠程收集地球表面和大氣數據的新見解,包括隨著季節、洪水、地震和其他自然現象發生的變化。特別是,隨著本書對極化雷達的重點,讀者將發現如何利用這些系統的許多特殊特徵,這些特徵提供了可以通過雷達遠程獲得的最大信息量。

本書對電磁波傳播、天線、雷達和合成孔徑雷達、概率和隨機過程以及雷達干涉測量的入門級覆蓋,為進一步學習更複雜的材料奠定了基礎。更高級的數學和技術處理使讀者能夠充分掌握通信系統中極化波的傳輸、傳播和接收,以及極化雷達遙感。讀者將在本書中發現許多新材料,包括:
- 區分相干測量和非相干測量的目標矩陣,認識到這兩種矩陣類型在表示目標時並不等價
- 從散射波中去除非極化成分,並從結果的相干散射波中推導出分類用的目標矩陣
- 選擇天線極化以最大化期望和不期望去極化目標之間的對比

本書中提供的問題範圍從入門到挑戰性不等。

工程師將發現這是一本理想的參考書,幫助他們充分利用極化雷達的強大能力。它也將幫助農學家、地理學家、氣象學家和其他使用遠程獲取的地球數據的科學家評估程序並更好地解釋數據。本書也可以根據本科和研究生的遙感課程進行調整,並提供適合此類課程的文本材料建議。

**目錄**

前言
致謝
1. 電磁波
1.1. 時間不變的麥克斯韋方程
1.2. 電磁行波
1.3. 功率密度
1.4. 極化橢圓
1.5. 極化向量和極化比
1.6. 圓形波成分
1.7. 極化基的變化
1.8. 以PQ表示的橢圓特徵
1.9. 相干性和斯托克斯向量
1.10. 庫朗卡球
參考文獻
問題
2. 天線
2.1. 天線系統的元素
2.2. 向量勢
2.3. 向量勢的解
2.4. 遠區場
2.5. 輻射模式
2.6. 增益和指向性
2.7. 接收天線
2.8. 天線之間的傳輸
2.9. 天線陣列
2.10. 天線的有效長度
2.11. 完全極化波的接收
2.12. 增益、有效面積和輻射阻抗
2.13. 最大接收功率
2.14. 極化效率
2.15. 修改的弗里斯傳輸方程
2.16. 天線的對準
參考文獻
問題
3. 相干散射目標
3.1. 雷達目標
3.2. 琼斯矩陣
3.3. 辛克萊矩陣
3.4. 具有相對相位的矩陣
3.5. FSA–BSA 約定
3.6. 琼斯矩陣和辛克萊矩陣之間的關係
3.7. 圓形波成分的散射
3.8. 反向散射
3.9. 散射波的極化比
3.10. 極化基的變化:散射矩陣
3.11. 最大和最小功率的極化
3.12. 極化叉
3.13. 非對齊坐標系
3.14. 散射參數的確定
參考文獻
問題
4. 雷達簡介
4.1. 脈衝雷達
4.2. CW 雷達
4.3. 雷達測量的方向性特性
4.4. 分辨率
4.5. 成像雷達
4.6. 傳統雷達方程
4.7. 極化雷達方程
4.8. 極化雷達
4.9. 噪聲
參考文獻
問題
5. 合成孔徑雷達
5.1. 創建地形圖
5.2. 距離分辨率
5.3. 方位分辨率
5.4. 幾何因子
5.5. 極化合成孔徑雷達
5.6. SAR 錯誤
5.7. 高度測量
5.8. 極化干涉測量
5.9. 相位展開
參考文獻
問題
6. 部分極化波
6.1. 場的表示
6.2. 部分極化波的表示
6.3. 部分極化波的接收
參考文獻
問題
7. 去極化目標的散射
7.1. 目標
7.2. 平均辛克萊矩陣
7.3. 克羅內克乘積矩陣
7.4. 去極化目標的矩陣:相干測量
7.5. 非相干測量的目標矩陣
7.6. 矩陣特性和關係
7.7. 修改的矩陣
7.8. 名稱
7.9. 額外的目標信息
7.10. 目標協方差和相干矩陣
7.11. 具有圓形成分的散射矩陣
7.12. 格雷夫斯功率密度矩陣
7.13. 測量考量
7.14. 極化程度和極化熵
7.15. 功率的方差
7.16. 功率方程和矩陣關係的總結
參考文獻
問題
8. 雷達的最佳極化
8.1. 天線選擇標準
8.2. 拉格朗日乘數
A. 相干散射目標
8.3. 最大功率
8.4. 功率對比:反向散射
B. 去極化目標
8.5. 最大化功率對比的迭代程序
8.6. 反向散射協方差矩陣
8.7. 雙靜態協方差矩陣
8.8. 通過矩陣分解最大化功率對比
8.9. 使用格雷夫斯矩陣的優化
參考文獻
問題
9. 目標的分類
A. 分類概念
9.1. 目標的表示和分類
9.2. 貝葉斯決策規則
9.3. 尼曼-皮爾森決策規則
9.4. 貝葉斯錯誤界限
9.5. 從數據中估計參數
9.6. 非參數分類
B. 通過矩陣分解進行分類
9.7. 相干分解
9.8. 功率型矩陣的分解
C. 去除非極化散射
9.9. D 矩陣的分解
9.10. 極化雜波
9.11. 類似的分解
9.12. 極化相似性分類
參考文獻
問題
附錄 A. 衰落和斑點
參考文獻
附錄 B. 機率和隨機過程
B.1. 機率
B.2. 隨機變量
B.3. 隨機向量
B.4. 遙感中的概率密度函數
B.5. 隨機過程
參考文獻
附錄 C. 肯納矩陣
附錄 D. 貝葉斯錯誤界限
參考文獻
索引