Remote Sensing with Polarimetric Radar (Hardcover)

Harold Mott

  • 出版商: Wiley
  • 出版日期: 2007-01-01
  • 售價: $1,500
  • 貴賓價: 9.8$1,470
  • 語言: 英文
  • 頁數: 309
  • 裝訂: Hardcover
  • ISBN: 0470074760
  • ISBN-13: 9780470074763
  • 相關分類: 物理學 Physics
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Description

Discover the principles and techniques of remote sensing with polarimetric radar

This book presents the principles central to understanding polarized wave transmission, scattering, and reception in communication systems and polarimetric and non-polarimetric radar. Readers gain new insight into the methods for remotely gathering data about the earth's surface and atmosphere with polarimetric synthetic-aperture radar and polarimetric interferometry, including the changes that take place with seasons, floods, earthquakes, and other natural phenomena. In particular, with the book's focus on polarimetric radars, readers discover how to exploit the many special features of these systems, which provide the maximum amount of information that can be obtained remotely with radar.

Introductory-level coverage of electromagnetic wave propagation, antennas, radar and synthetic aperture radar, probability and random processes, and radar interferometry serves as a foundation for advancing to more complex material. A more advanced mathematical and technical treatment enables readers to fully grasp polarized wave transmission, propagation, and reception in communication systems and polarimetric-radar remote sensing. Readers will discover much new material in this text, including:

  • Distinguishing between coherently-measured and incoherently-measured target matrices for power, recognizing that the two matrix types are not equivalent in representing targets
  • Removing unpolarized components from the scattered wave and deriving a target matrix for classification from the resulting coherently-scattered wave
  • Selecting an antenna polarization to maximize the contrast between desired and undesired depolarizing targets

Problems ranging in complexity from introductory to challenging are presented throughout the text.

Engineers will find this an ideal reference to help them fully utilize the powerful capabilities of polarimetric radar. It will also help agronomists, geographers, meteorologists, and other scientists who use remotely obtained data about the earth to evaluate procedures and better interpret the data. The book can also be tailored to both undergraduate and graduate courses in remote sensing, and recommendations are given for text material suitable for such courses.

Table of Contents

PREFACE.

ACKNOWLEDGMENTS.

1. ELECTROMAGNETIC WAVES.

1.1. The Time-Invariant Maxwell Equations.

1.2. The Electromagnetic Traveling Wave.

1.3. Power Density.

1.4. The Polarization Ellipse.

1.5. Polarization Vector and Polarization Ratio.

1.6. Circular Wave Components.

1.7. Change of Polarization Basis.

1.8. Ellipse Characteristics in Terms of P and Q.

1.9. Coherency and Stokes Vectors.

1.10. The Poincar´e Sphere.

References.

Problems.

2. ANTENNAS.

2.1. Elements of the Antenna System.

2.2. The Vector Potentials.

2.3. Solutions for the Vector Potentials.

2.4. Far-Zone Fields.

2.5. Radiation Pattern.

2.6. Gain and Directivity.

2.7. The Receiving Antenna.

2.8. Transmission Between Antennas.

2.9. Antenna Arrays.

2.10. Effective Length of an Antenna.

2.11. Reception of Completely Polarized Waves.

2.12. Gain, Effective Area, and Radiation Resistance.

2.13. Maximum Received Power.

2.14. Polarization Efficiency.

2.15. The Modified Friis Transmission Equation.

2.16. Alignment of Antennas.

References.

Problems.

3. COHERENTLY SCATTERING TARGETS.

3.1. Radar Targets.

3.2. The Jones Matrix.

3.3. The Sinclair Matrix.

3.4. Matrices With Relative Phase.

3.5. FSA–BSA Conventions.

3.6. Relationship Between Jones and Sinclair Matrices.

3.7. Scattering with Circular Wave Components.

3.8. Backscattering.

3.9. Polarization Ratio of the Scattered Wave.

3.10. Change of Polarization Basis: The Scattering Matrix.

3.11. Polarizations for Maximum and Minimum Power.

3.12. The Polarization Fork.

3.13. Nonaligned Coordinate Systems.

3.14. Determination of Scattering Parameters.

References.

Problems.

4. AN INTRODUCTION TO RADAR.

4.1. Pulse Radar.

4.2. CW Radar.

4.3. Directional Properties of Radar Measurements.

4.4. Resolution.

4.5. Imaging Radar.

4.6. The Traditional Radar Equation.

4.7. The Polarimetric Radar Equation.

4.8. A Polarimetric Radar.

4.9. Noise.

References.

Problems.

5. SYNTHETIC APERTURE RADAR.

5.1. Creating a Terrain Map.

5.2. Range Resolution.

5.3. Azimuth Resolution.

5.4. Geometric Factors.

5.5. Polarimetric SAR.

5.6. SAR Errors.

5.7. Height Measurement.

5.8. Polarimetric Interferometry.

5.9. Phase Unwrapping.

References.

Problems.

6. PARTIALLY POLARIZED WAVES.

6.1. Representation of the Fields.

6.2. Representation of Partially Polarized Waves.

6.3. Reception of Partially Polarized Waves.

References.

Problems.

7. SCATTERING BY DEPOLARIZING TARGETS.

7.1. Targets.

7.2. Averaging the Sinclair Matrix.

7.3. The Kronecker-Product Matrices.

7.4. Matrices for a Depolarizing Target: Coherent Measurement.

7.5. Incoherently Measured Target Matrices.

7.6. Matrix Properties and Relationships.

7.7. Modified Matrices.

7.8. Names.

7.9. Additional Target Information.

7.10. Target Covariance and Coherency Matrices.

7.11. A Scattering Matrix with Circular Components.

7.12. The Graves Power Density Matrix.

7.13. Measurement Considerations.

7.14. Degree of Polarization and Polarimetric Entropy.

7.15. Variance of Power.

7.16. Summary of Power Equations and Matrix Relationships.

References.

Problems.

8. OPTIMAL POLARIZATIONS FOR RADAR.

8.1. Antenna Selection Criteria.

8.2. Lagrange Multipliers.

A. COHERENTLY SCATTERING TARGETS.

8.3. Maximum Power.

8.4. Power Contrast: Backscattering.

B. DEPOLARIZING TARGETS.

8.5. Iterative Procedure for Maximizing Power Contrast.

8.6. The Backscattering Covariance Matrix.

8.7. The Bistatic Covariance Matrix.

8.8. Maximizing Power Contrast by Matrix Decomposition.

8.9. Optimization with the Graves Matrix.

References.

Problems.

9. CLASSIFICATION OF TARGETS.

A. CLASSIFICATION CONCEPTS.

9.1. Representation and Classification of Targets.

9.2. Bayes Decision Rule.

9.3. The Neyman-Pearson Decision Rule.

9.4. Bayes Error Bounds.

9.5. Estimation of Parameters from Data.

9.6. Nonparametric Classification.

B. CLASSIFICATION BY MATRIX DECOMPOSITION.

9.7. Coherent Decomposition.

9.8. Decomposition of Power-Type Matrices.

C. REMOVAL OF UNPOLARIZED SCATTERING.

9.9. Decomposition of the D Matrix.

9.10. Polarized Clutter.

9.11. A Similar Decomposition.

9.12. Polarimetric Similarity Classification.

References.

Problems.

APPENDIX A. FADING AND SPECKLE.

Reference.

APPENDIX B. PROBABILITY AND RANDOM PROCESSES.

B.1. Probability.

B.2. Random Variables.

B.3. Random Vectors.

B.4. Probability Density Functions in Remote Sensing.

B.5. Random Processes.

References.

APPENDIX C. THE KENNAUGH MATRIX.

APPENDIX D. BAYES ERROR BOUNDS.

References.

INDEX.

商品描述(中文翻譯)

描述

本書介紹了遙感極化雷達的原理和技術。讀者將深入了解通信系統和極化和非極化雷達中極化波的傳播、散射和接收的原理。讀者將獲得有關使用極化合成孔徑雷達和極化干涉測量地球表面和大氣的數據的方法的新見解,包括季節、洪水、地震和其他自然現象引起的變化。特別是,本書專注於極化雷達,讀者將了解如何利用這些系統的許多特殊功能,這些功能提供了遠程雷達所能獲得的最大信息量。

本書首先介紹了電磁波的傳播、天線、雷達和合成孔徑雷達、概率和隨機過程以及雷達干涉的入門級內容,為進一步理解通信系統和極化雷達遙感提供了基礎。更高級的數學和技術處理使讀者能夠充分理解通信系統和極化雷達遙感中的極化波的傳播和接收。本書還包含了許多新的材料,包括:

- 區分功率的相干測量和非相干測量的目標矩陣,認識到這兩種矩陣類型在表示目標方面並不等價
- 從散射波中去除非極化成分,並從結果的相干散射波中推導出用於分類的目標矩陣
- 選擇天線極化以最大化所需和不需要的去極化目標之間的對比度

本書中提供了從入門到具有挑戰性的各種難度的問題。

工程師將發現本書是一個理想的參考資料,幫助他們充分利用極化雷達的強大功能。它還將幫助農學家、地理學家、氣象學家和其他使用遠程獲得的地球數據的科學家評估程序並更好地解釋數據。本書還可以根據遙感的本科和研究生課程進行調整,並提供了適合此類課程的文本材料的建議。

目錄

前言
致謝
1. 電磁波
1.1. 不變的麥克斯韋方程組
1.2. 電磁行波
1.3. 功率密度
1.4. 極化橢圓
1.5. 極化向量和極化比
1.6. 圓波分量
1.7. 極化基底的變換
1.8. 以P和Q表示的橢圓特性
1.9. 相干性和斯托克斯向量
1.10. 波茲卡雷球
參考文獻
問題
2. 天線
2.1. 天線系統的元素
2.2. 向量電位
2.3. 向量電位的解
2.4. 遠場場
2.5. 輻射圖案
2.6. 增益和指向性
2.7. 接收天線
2.8. 天線之間的傳輸
2.9. 天線陣列
2.10. 天線的有效長度
2.11. 完全極化波的接收
2.12. 增益、有效面積和輻射